Rathore Pramod Singh, Kumar Abhishek, Nandal Amita, Dhaka Arvind, Sharma Arpit Kumar
Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India.
Department of CSE, Chandigarh University, Punjab, India.
Sci Rep. 2025 Feb 25;15(1):6758. doi: 10.1038/s41598-025-90780-z.
Diabetic foot ulcers (DFUs) are a common and serious complication of diabetes, presenting as open sores or wounds on the sole. They result from impaired blood circulation and neuropathy associated with diabetes, increasing the risk of severe infections and even amputations if untreated. Early detection, effective wound care, and diabetes management are crucial to prevent and treat DFUs. Artificial intelligence (AI), particularly through deep learning, has revolutionized DFU diagnosis and treatment. This work introduces the DFU_XAI framework to enhance the interpretability of deep learning models for DFU labeling and localization, ensuring clinical relevance. The framework evaluates six advanced models-Xception, DenseNet121, ResNet50, InceptionV3, MobileNetV2, and Siamese Neural Network (SNN)-using interpretability techniques like SHAP, LIME, and Grad-CAM. Among these, the SNN model excelled with 98.76% accuracy, 99.3% precision, 97.7% recall, 98.5% F1-score, and 98.6% AUC. Grad-CAM heat maps effectively identified ulcer locations, aiding clinicians with precise and visually interpretable insights. The DFU_XAI framework integrates explainability into AI-driven healthcare, enhancing trust and usability in clinical settings. This approach addresses challenges of transparency in AI for DFU management, offering reliable and efficient solutions to this critical healthcare issue. Traditional DFU methods are labor-intensive and costly, highlighting the transformative potential of AI-driven systems.
糖尿病足溃疡(DFUs)是糖尿病常见且严重的并发症,表现为脚底出现开放性溃疡或伤口。它们是由糖尿病相关的血液循环受损和神经病变引起的,如果不治疗,会增加严重感染甚至截肢的风险。早期检测、有效的伤口护理和糖尿病管理对于预防和治疗糖尿病足溃疡至关重要。人工智能(AI),特别是通过深度学习,已经彻底改变了糖尿病足溃疡的诊断和治疗。这项工作引入了DFU_XAI框架,以增强深度学习模型对糖尿病足溃疡标记和定位的可解释性,确保临床相关性。该框架使用SHAP、LIME和Grad-CAM等可解释性技术评估了六种先进模型——Xception、DenseNet121、ResNet50、InceptionV3、MobileNetV2和暹罗神经网络(SNN)。其中,SNN模型表现出色,准确率为98.76%,精确率为99.3%,召回率为97.7%,F1分数为98.5%,AUC为98.6%。Grad-CAM热图有效地识别了溃疡位置,为临床医生提供了精确且视觉上可解释的见解。DFU_XAI框架将可解释性集成到人工智能驱动的医疗保健中,增强了临床环境中的信任度和可用性。这种方法解决了人工智能在糖尿病足溃疡管理中的透明度挑战,为这一关键的医疗保健问题提供了可靠且高效的解决方案。传统的糖尿病足溃疡方法劳动强度大且成本高,凸显了人工智能驱动系统的变革潜力。