Suppr超能文献

一种用于稳健胃肠道疾病诊断的混合XAI驱动深度学习框架。

A hybrid XAI-driven deep learning framework for robust GI tract disease diagnosis.

作者信息

Dahan Fadl, Shah Jamal Hussain, Saleem Rabia, Hasnain Muhammad, Afzal Maira, Alfakih Taha M

机构信息

Department of Management Information Systems, College of Business Administration - Hawtat Bani Tamim, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.

Department of Computer Science, COMSATS University Islamabad, Wah campus, Wah, Pakistan.

出版信息

Sci Rep. 2025 Jul 1;15(1):21139. doi: 10.1038/s41598-025-07690-3.

Abstract

The stomach is one of the main digestive organs in the GIT, essential for digestion and nutrient absorption. However, various gastrointestinal diseases, including gastritis, ulcers, and cancer, affect health and quality of life severely. The precise diagnosis of gastrointestinal (GI) tract diseases is a significant challenge in the field of healthcare, as misclassification leads to late prescriptions and negative consequences for patients. Even with the advancement in machine learning and explainable AI for medical image analysis, existing methods tend to have high false negative rates which compromise critical disease cases. This paper presents a hybrid deep learning based explainable artificial intelligence (XAI) approach to improve the accuracy of gastrointestinal disorder diagnosis, including stomach diseases, from images acquired endoscopically. Swin Transformer with DCNN (EfficientNet-B3, ResNet-50) is integrated to improve both the accuracy of diagnostics and the interpretability of the model to extract robust features. Stacked machine learning classifiers with meta-loss and XAI techniques (Grad-CAM) are combined to minimize false negatives, which helps in early and accurate medical diagnoses in GI tract disease evaluation. The proposed model successfully achieved an accuracy of 93.79% with a lower misclassification rate, which is effective for gastrointestinal tract disease classification. Class-wise performance metrics, such as precision, recall, and F1-score, show considerable improvements with false-negative rates being reduced. AI-driven GI tract disease diagnosis becomes more accessible for medical professionals through Grad-CAM because it provides visual explanations about model predictions. This study makes the prospect of using a synergistic DL with XAI open for improvement towards early diagnosis with fewer human errors and also guiding doctors handling gastrointestinal diseases.

摘要

胃是胃肠道主要的消化器官之一,对消化和营养吸收至关重要。然而,包括胃炎、溃疡和癌症在内的各种胃肠道疾病严重影响健康和生活质量。胃肠道疾病的准确诊断是医疗保健领域的一项重大挑战,因为误诊会导致治疗延迟并给患者带来不良后果。即使机器学习和用于医学图像分析的可解释人工智能有所进步,现有方法往往仍有较高的假阴性率,这会危及关键疾病病例。本文提出一种基于深度学习的混合可解释人工智能(XAI)方法,以提高从内镜获取的图像中胃肠道疾病(包括胃部疾病)诊断的准确性。将Swin Transformer与深度卷积神经网络(DCNN,如EfficientNet-B3、ResNet-50)集成,以提高诊断准确性和模型的可解释性,从而提取强大的特征。将具有元损失的堆叠机器学习分类器与XAI技术(Grad-CAM)相结合,以尽量减少假阴性,这有助于在胃肠道疾病评估中进行早期准确的医学诊断。所提出的模型成功实现了93.79%的准确率,且错误分类率较低,对胃肠道疾病分类有效。各类性能指标,如精确率、召回率和F1分数,都有显著提高,假阴性率降低。通过Grad-CAM,人工智能驱动的胃肠道疾病诊断对医学专业人员来说更容易实现,因为它提供了关于模型预测的可视化解释。本研究使得利用协同深度学习与XAI实现早期诊断、减少人为错误并指导医生处理胃肠道疾病的前景更加广阔。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验