Sharma Osheen, Gudoityte Greta, Minozada Rezan, Kallioniemi Olli P, Turkki Riku, Paavolainen Lassi, Seashore-Ludlow Brinton
Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden.
Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
Commun Biol. 2025 Feb 25;8(1):303. doi: 10.1038/s42003-025-07766-w.
Single-cell image analysis is crucial for studying drug effects on cellular morphology and phenotypic changes. Most studies focus on single cell types, overlooking the complexity of cellular interactions. Here, we establish an analysis pipeline to extract phenotypic features of cancer cells cultured with fibroblasts. Using high-content imaging, we analyze an oncology drug library across five cancer and fibroblast cell line co-culture combinations, generating 61,440 images and ∼170 million single-cell objects. Traditional phenotyping with CellProfiler achieves an average enrichment score of 62.6% for mechanisms of action, while pre-trained neural networks (EfficientNetB0 and MobileNetV2) reach 61.0% and 62.0%, respectively. Variability in enrichment scores may reflect the use of multiple drug concentrations since not all induce significant morphological changes, as well as the cellular and genetic context of the treatment. Our study highlights nuanced drug-induced phenotypic variations and underscores the morphological heterogeneity of ovarian cancer cell lines and their response to complex co-culture environments.
单细胞图像分析对于研究药物对细胞形态和表型变化的影响至关重要。大多数研究集中于单一细胞类型,而忽略了细胞间相互作用的复杂性。在此,我们建立了一个分析流程,以提取与成纤维细胞共培养的癌细胞的表型特征。利用高内涵成像技术,我们分析了一个肿瘤药物库,该药物库涵盖五种癌症与成纤维细胞系的共培养组合,生成了61,440张图像和约1.7亿个单细胞对象。使用CellProfiler进行传统表型分析时,作用机制的平均富集分数为62.6%,而预训练神经网络(EfficientNetB0和MobileNetV2)分别达到61.0%和62.0%。富集分数的差异可能反映了多种药物浓度的使用情况,因为并非所有药物都会诱导显著的形态变化,以及治疗的细胞和基因背景。我们的研究突出了细微的药物诱导表型变异,并强调了卵巢癌细胞系的形态异质性及其对复杂共培养环境的反应。