Hikino Keiko, Shoji Kensuke, Saito Jumpei, Fukunaga Koya, Liu Xiaoxi, Matsui Toshihiro, Utano Tomoyuki, Takebayashi Akira, Tomizawa Daisuke, Kato Motohiro, Matsumoto Kimikazu, Ishikawa Takashi, Kawai Toshinao, Nakamura Hidefumi, Miyairi Isao, Terao Chikashi, Mushiroda Taisei
Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan.
Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan.
Br J Clin Pharmacol. 2025 Jul;91(7):2020-2027. doi: 10.1002/bcp.70026. Epub 2025 Feb 25.
The influence of CYP2C19 polymorphisms on voriconazole plasma concentrations is recognized, but its extent, other contributing factors and risks for adverse reactions remain under-explored.
This study focused on Japanese paediatric patients recruited between 2020 and 2022 treated with voriconazole. We specifically investigated the occurrence of cholestasis and thrombocytopenia as adverse reactions of voriconazole. Voriconazole plasma levels were modelled in a previous study using a population pharmacokinetics approach. Missing values were estimated with a Bayesian method in Phoenix NLME. We analysed CYP2C192, CYP2C193 and CYP2C19*17. Clinical and laboratory data were collected before and after voriconazole treatment.
Among the 60 patients (mean age: 6.5 years; 53.3% male), 38 had haematological malignancies, 18 inborn errors of immunity, 2 solid tumours and 2 other diseases. Adverse reactions occurred in 12 patients. The voriconazole plasma concentrations were significantly higher in those experiencing these adverse reactions (mean normalized concentrations: 0.66 in cases vs. -0.16 in controls, P = .025), with a trend towards higher concentrations in carriers of the CYP2C19*2 or 3 alleles (mean normalized concentrations: 0.98 in carrier cases vs. 0.016 in noncarrier cases, P = .14). A predictive model for voriconazole concentrations, incorporating carriership of CYP2C192 or 3, C-reactive protein levels, and platelet counts, showed a summed variance explained of 23.6% with the variance attributable to CYP2C192 or *3 carrier status alone was 2.6%. Including carrier status improved the area under the receiver operating characteristic curve for predicting adverse reactions to 0.70.
Our findings underscore the role of the CYP2C19 polymorphism in voriconazole-induced thrombocytopenia and cholestasis.
CYP2C19基因多态性对伏立康唑血药浓度的影响已得到认可,但其影响程度、其他影响因素以及不良反应风险仍有待深入研究。
本研究聚焦于2020年至2022年间招募的接受伏立康唑治疗的日本儿科患者。我们特别调查了伏立康唑不良反应胆汁淤积和血小板减少症的发生情况。伏立康唑血药浓度在之前的一项研究中采用群体药代动力学方法进行建模。缺失值在Phoenix NLME中采用贝叶斯方法进行估计。我们分析了CYP2C192、CYP2C193和CYP2C19*17。在伏立康唑治疗前后收集临床和实验室数据。
60例患者(平均年龄:6.5岁;53.3%为男性)中,38例患有血液系统恶性肿瘤,18例患有先天性免疫缺陷,2例患有实体瘤,2例患有其他疾病。12例患者出现不良反应。发生这些不良反应的患者伏立康唑血药浓度显著更高(平均标准化浓度:病例组为0.66,对照组为-0.16,P = 0.025),CYP2C192或3等位基因携带者的浓度有升高趋势(平均标准化浓度:携带者病例组为0.98,非携带者病例组为0.016,P = 0.14)。一个包含CYP2C192或3携带者状态、C反应蛋白水平和血小板计数的伏立康唑浓度预测模型显示,总方差解释率为23.6%,仅CYP2C192或3携带者状态的方差贡献率为2.6%。纳入携带者状态可将预测不良反应的受试者工作特征曲线下面积提高到0.70。
我们的研究结果强调了CYP2C19基因多态性在伏立康唑诱导的血小板减少症和胆汁淤积中的作用。