Herrera-Espejo Soraya, Rubio Alejandro, Ceballos-Romero Lucía, Pachón Jerónimo, Cordero Elisa, Pérez-Pulido Antonio J, Pachón-Ibáñez María Eugenia
Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain.
Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain.
Biomolecules. 2025 Feb 11;15(2):260. doi: 10.3390/biom15020260.
Urinary tract infections are a global health concern, with uropathogenic (UPEC) accounting for 80-90% of cases. Given the rise in antimicrobial resistance, our aim was to elucidate the genetic mechanisms behind low-level resistance to ciprofloxacin and fosfomycin (LLCR and LLFR) in UPEC strains, using whole-genome sequencing (WGS) to identify point mutations in chromosomal and plasmid genes.
A cohort UPEC was collected from kidney transplant recipients at the Virgen del Rocío University Hospital, Spain. Minimum inhibitory concentrations were determined for ciprofloxacin and fosfomycin to categorize strains into LLCR and LLFR. Twenty strains were selected for WGS, with genome annotations. Point mutations were identified and analyzed using alignment tools, and protein stability changes were predicted.
LLCR strains exhibited mutations in key quinolone resistance-determining regions of the gene, in 83% of cases. The plasmid gene was found in 17% of LLCR strains. LLFR strains showed mutations in the and genes. Mutations in the gene family were linked to the fosfomycin-resistant phenotype, suggesting a multi-step resistance evolution mechanism.
This study highlights the complex interplay between chromosomal and plasmid genes in UPEC's resistance to ciprofloxacin and fosfomycin. The findings contribute to understanding low-level resistance mechanisms and may guide the development of novel therapeutic strategies to combat multidrug-resistant strains.
尿路感染是一个全球关注的健康问题,其中尿路致病性大肠杆菌(UPEC)占病例的80-90%。鉴于抗菌药物耐药性的上升,我们的目标是利用全基因组测序(WGS)来鉴定染色体和质粒基因中的点突变,以阐明UPEC菌株对环丙沙星和磷霉素低水平耐药(LLCR和LLFR)背后的遗传机制。
从西班牙罗西奥圣母大学医院的肾移植受者中收集一组UPEC。测定环丙沙星和磷霉素的最低抑菌浓度,将菌株分为LLCR和LLFR。选择20株进行WGS,并进行基因组注释。使用比对工具鉴定和分析点突变,并预测蛋白质稳定性变化。
83%的LLCR菌株在基因的关键喹诺酮耐药决定区域出现突变。17%的LLCR菌株中发现了质粒基因。LLFR菌株在基因和基因中出现突变。基因家族中的突变与磷霉素耐药表型相关,提示存在多步耐药进化机制。
本研究突出了染色体和质粒基因在UPEC对环丙沙星和磷霉素耐药中的复杂相互作用。这些发现有助于理解低水平耐药机制,并可能指导开发对抗多重耐药菌株的新型治疗策略。