Suppr超能文献

用于阿尔茨海默病诊断和风险预测的自噬相关基因特征识别

Identification of Lipophagy-Related Gene Signature for Diagnosis and Risk Prediction of Alzheimer's Disease.

作者信息

Guo Hongxiu, Zheng Siyi, Sun Shangqi, Shi Xueying, Wang Xiufeng, Yang Yang, Ma Rong, Li Gang

机构信息

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Department of General Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.

出版信息

Biomedicines. 2025 Feb 5;13(2):362. doi: 10.3390/biomedicines13020362.

Abstract

Recent research indicates that lipid metabolism and autophagy play crucial roles in the development of Alzheimer's disease (AD). Investigating the relationship between AD diagnosis and gene expression related to lipid metabolism, autophagy, and lipophagy may improve early diagnosis and the identification of therapeutic targets. Transcription datasets from AD patients were obtained from the Gene Expression Omnibus (GEO). Genes associated with lipid metabolism, autophagy, and lipophagy were sourced from the Gene Set Enrichment Analysis (GSEA) database and the Human Autophagy Database (HADb). Lipophagy-related hub genes were identified using a combination of Limma analysis, weighted gene co-expression network analysis (WGCNA), and machine learning techniques. Based on these hub genes, we developed an AD risk prediction nomogram and validated its diagnostic accuracy using three external validation datasets. Additionally, the expression levels of the hub genes were assessed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our analysis identified three hub genes-, , and -as being associated with AD progression. The nomogram constructed from these hub genes achieved an area under the curve (AUC) value of 0.894 for AD risk prediction, with all validation sets yielding AUC values greater than 0.8, indicating excellent diagnostic efficacy. qRT-PCR results further corroborated the associations between these hub genes and AD development. This study identified and validated three lipophagy-related hub genes and developed a reliable diagnostic model, offering insights into the pathology of AD and facilitating the diagnosis of AD patients.

摘要

近期研究表明,脂质代谢和自噬在阿尔茨海默病(AD)的发展过程中起着关键作用。研究AD诊断与脂质代谢、自噬和脂质自噬相关基因表达之间的关系,可能会改善早期诊断并有助于确定治疗靶点。AD患者的转录数据集来自基因表达综合数据库(GEO)。与脂质代谢、自噬和脂质自噬相关的基因来自基因集富集分析(GSEA)数据库和人类自噬数据库(HADb)。使用Limma分析、加权基因共表达网络分析(WGCNA)和机器学习技术相结合的方法,确定了与脂质自噬相关的核心基因。基于这些核心基因,我们开发了一个AD风险预测列线图,并使用三个外部验证数据集验证了其诊断准确性。此外,通过定量逆转录聚合酶链反应(qRT-PCR)评估了核心基因的表达水平。我们的分析确定了三个与AD进展相关的核心基因—— 、 和 。由这些核心基因构建的列线图在AD风险预测中的曲线下面积(AUC)值为0.894,所有验证集的AUC值均大于0.8,表明具有优异的诊断效能。qRT-PCR结果进一步证实了这些核心基因与AD发展之间的关联。本研究鉴定并验证了三个与脂质自噬相关的核心基因,并开发了一个可靠的诊断模型,为AD的病理学研究提供了见解,并有助于AD患者的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b699/11853564/3650b7750334/biomedicines-13-00362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验