Nizama Marco
Departamento de Fisica, Facultad de Ingenieria and CONICET, Universidad Nacional del Comahue, Neuquen 8300, Argentina.
Entropy (Basel). 2025 Jan 22;27(2):105. doi: 10.3390/e27020105.
I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér-Rao bound. To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher's equations. The Fisher information revealed a power-law decay of t-ν, with ν=2 for short times and ν=1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
我使用一个随时间演化的非局部主方程来研究具有周期性边界条件的晶格。我运用诸如费希尔信息、香农熵、复杂度和克拉美 - 罗界等经典理论来研究不同的系统状态。为了模拟空间连续性,我在环中使用大量的位点,并将结果与像电报方程这样的连续空间系统进行比较。在所有跳跃模型中,费希尔信息显示出t的 -ν次幂衰减,短时间内ν = 2,长时间内ν = 1。随着时间推移,复杂度以及与香农熵相关的费希尔信息也观察到了类似的幂律趋势。此外,我分析了仅具有两个环位点的玩具模型,以了解费希尔信息和香农熵的行为。正如预期的那样,位点数量少的环在长时间后会迅速收敛到均匀分布。我还研究了短时间和长时间的香农熵。