Suppr超能文献

分数阶薛定谔方程中双曲势的量子信息熵

Quantum Information Entropy of Hyperbolic Potentials in Fractional Schrödinger Equation.

作者信息

Santana-Carrillo R, González-Flores Jesus S, Magaña-Espinal Emilio, Quezada Luis F, Sun Guo-Hua, Dong Shi-Hai

机构信息

Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Ciudad de Mexico 07738, Mexico.

Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China.

出版信息

Entropy (Basel). 2022 Oct 24;24(11):1516. doi: 10.3390/e24111516.

Abstract

In this work we have studied the Shannon information entropy for two hyperbolic single-well potentials in the fractional Schrödinger equation (the fractional derivative number (0<n≤2) by calculating position and momentum entropy. We find that the wave function will move towards the origin as the fractional derivative number n decreases and the position entropy density becomes more severely localized in more fractional system, i.e., for smaller values of n, but the momentum probability density becomes more delocalized. And then we study the Beckner Bialynicki-Birula−Mycieslki (BBM) inequality and notice that the Shannon entropies still satisfy this inequality for different depth u even though this inequality decreases (or increases) gradually as the depth u of the hyperbolic potential U1 (or U2) increases. Finally, we also carry out the Fisher entropy and observe that the Fisher entropy increases as the depth u of the potential wells increases, while the fractional derivative number n decreases.

摘要

在这项工作中,我们通过计算位置熵和动量熵,研究了分数阶薛定谔方程中两个双曲单阱势的香农信息熵(分数阶导数阶数(0 < n \leq 2))。我们发现,随着分数阶导数阶数(n)减小,波函数将向原点移动,并且在更多分数阶系统中,位置熵密度变得更加严重地局域化,即对于较小的(n)值,但动量概率密度变得更加离域。然后我们研究了贝克纳 - 比亚林斯基 - 比鲁拉 - 米切尔斯基(BBM)不等式,并注意到即使随着双曲势(U1)(或(U2))的深度(u)增加,该不等式逐渐减小(或增加),香农熵对于不同的深度(u)仍然满足该不等式。最后,我们还进行了费希尔熵的计算,并观察到随着势阱深度(u)增加,费希尔熵增加,而分数阶导数阶数(n)减小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/055f/9689018/b18e35d414e9/entropy-24-01516-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验