Suppr超能文献

分数阶薛定谔方程中双曲双阱势的量子信息熵

Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation.

作者信息

Santana-Carrillo R, Peto J M Velázquez, Sun Guo-Hua, Dong Shi-Hai

机构信息

Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07700, Mexico.

ESIME-Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana 1000, Mexico City 04430, Mexico.

出版信息

Entropy (Basel). 2023 Jun 28;25(7):988. doi: 10.3390/e25070988.

Abstract

In this study, we investigate the position and momentum Shannon entropy, denoted as Sx and Sp, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic double well potential (HDWP). We explore various values of the fractional derivative represented by in our analysis. Our findings reveal intriguing behavior concerning the localization properties of the position entropy density, ρs(x), and the momentum entropy density, ρs(p), for low-lying states. Specifically, as the fractional derivative decreases, ρs(x) becomes more localized, whereas ρs(p) becomes more delocalized. Moreover, we observe that as the derivative decreases, the position entropy Sx decreases, while the momentum entropy Sp increases. In particular, the sum of these entropies consistently increases with decreasing fractional derivative . It is noteworthy that, despite the increase in position Shannon entropy Sx and the decrease in momentum Shannon entropy Sp with an increase in the depth of the HDWP, the Beckner-Bialynicki-Birula-Mycielski (BBM) inequality relation remains satisfied. Furthermore, we examine the Fisher entropy and its dependence on the depth of the HDWP and the fractional derivative . Our results indicate that the Fisher entropy increases as the depth of the HDWP is increased and the fractional derivative is decreased.

摘要

在本研究中,我们在双曲双阱势(HDWP)的分数薛定谔方程(FSE)背景下,分别研究了位置和动量的香农熵,分别记为Sx和Sp。在我们的分析中,我们探讨了由表示的分数导数的各种值。我们的研究结果揭示了关于低能态下位置熵密度ρs(x)和动量熵密度ρs(p)的局域化性质的有趣行为。具体而言,随着分数导数减小,ρs(x)变得更加局域化,而ρs(p)变得更加离域化。此外,我们观察到随着导数减小,位置熵Sx减小,而动动量熵Sp增加。特别是,这些熵的总和随着分数导数的减小而持续增加。值得注意的是,尽管随着HDWP深度的增加,位置香农熵Sx增加,动量香农熵Sp减小,但贝克纳 - 比亚林斯基 - 比鲁拉 - 米耶尔斯基(BBM)不等式关系仍然成立。此外,我们研究了费希尔熵及其对HDWP深度和分数导数的依赖性。我们的结果表明,随着HDWP深度的增加和分数导数的减小,费希尔熵增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f1b/10377981/e81b6efc7a8a/entropy-25-00988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验