Suppr超能文献

图像相似性量子算法及其在图像检索系统中的应用。

Image Similarity Quantum Algorithm and Its Application in Image Retrieval Systems.

作者信息

Yang Qingchuan, Feng Xianing, Wei Lianfu

机构信息

Information Quantum Technology Laboratory, International Cooperation Research Center of China Communication and Sensor Networks for Modern Transportation, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.

Sichuan Zhitu Linghai Intelligent Technology Co., Ltd., Chengdu 610213, China.

出版信息

Entropy (Basel). 2025 Jan 27;27(2):137. doi: 10.3390/e27020137.

Abstract

The measurement of image similarity represents a fundamental task within the domain of image processing, enabling the application of sophisticated computational techniques to ascertain the degree of similarity between two images. To enhance the performance of these similarity measurement algorithms, the academic community has investigated a range of quantum algorithms. Notably, the swap test-based quantum inner product algorithm (ST-QIP) has emerged as a pivotal method for computing image similarity. However, the inherent destructive nature of the swap test necessitates multiple quantum state evolutions and measurements, which leads to consumption of quantum resources and prolonged computational time, ultimately constraining its practical applicability. To address these limitations, this study introduces an advanced quantum inner product algorithm based on amplitude estimation (AE-QIP) designed to compute image similarity. This innovative approach circumvents the repetitive measurement processes associated with the swap test, thereby optimizing the utilization of quantum resources and substantially enhancing the algorithm's performance. We conducted experiments using a quantum simulator to implement the AE-QIP algorithm and evaluate its effectiveness in the image retrieval tasks. It is found that the AE-QIP algorithm achieves comparable precision to the ST-QIP algorithm while exhibiting significant reductions in qubit consumption and average processing time. Additionally, our findings suggest that increasing the number of ancillary qubits can further enhance the accuracy of the AE-QIP algorithm. Overall, within the acceptable error thresholds, the AE-QIP algorithm exhibits enhanced efficiency relative to the ST-QIP algorithm. However, significant further research is needed to address the challenges involved in optimizing the performance of quantum retrieval systems as a whole.

摘要

图像相似度的测量是图像处理领域的一项基本任务,它使得复杂的计算技术得以应用,以确定两幅图像之间的相似程度。为了提高这些相似度测量算法的性能,学术界研究了一系列量子算法。值得注意的是,基于交换测试的量子内积算法(ST-QIP)已成为计算图像相似度的关键方法。然而,交换测试固有的破坏性需要多次量子态演化和测量,这导致了量子资源的消耗和计算时间的延长,最终限制了其实际应用。为了解决这些限制,本研究引入了一种基于幅度估计的先进量子内积算法(AE-QIP)来计算图像相似度。这种创新方法规避了与交换测试相关的重复测量过程,从而优化了量子资源的利用,并显著提高了算法的性能。我们使用量子模拟器进行实验,以实现AE-QIP算法并评估其在图像检索任务中的有效性。结果发现,AE-QIP算法在精度上与ST-QIP算法相当,同时在量子比特消耗和平均处理时间方面有显著减少。此外,我们的研究结果表明,增加辅助量子比特的数量可以进一步提高AE-QIP算法的准确性。总体而言,在可接受的误差阈值内,AE-QIP算法相对于ST-QIP算法表现出更高的效率。然而

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4cd/11854836/220ea04b4fed/entropy-27-00137-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验