Wang Yueli, Li Ronglan, Guo Yuanhao, Du Yan, Luo Zhiheng, Guo Yuhang, Würschum Tobias, Liu Wenxin
State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China.
Int J Mol Sci. 2025 Feb 9;26(4):1445. doi: 10.3390/ijms26041445.
Phosphorus is one of the key limiting factors for maize growth and productivity, and low-phosphorus stress severely restricts crop yield and stability. Enhancing the ability of maize to grow under low-phosphorus stress and improving phosphorus use efficiency (PUE) are crucial for achieving high and stable yields. Phosphate transporter (PHT) family proteins play a crucial role in the absorption, transport, and utilization of phosphorus in plants. In this study, we systematically identified the PHT gene family in maize, followed by the phylogenetic, gene structure, and expression profiles. The results show that these genes are widely distributed across the 10 chromosomes of maize, forming multiple subfamilies, with the PHT1 subfamily having the largest number. Cis-regulatory element analysis revealed that these genes might play key roles in plant stress responses and hormone regulation. Transcriptome analysis under phosphorus-deficient and normal conditions demonstrated developmental stage- and tissue-specific expression patterns, identifying candidate genes, such as , , , and , involved in phosphorus stress response. This study presents a comprehensive and systematic analysis of the PHT gene family in maize, providing key molecular resources for improving phosphorus use efficiency and breeding phosphorus-efficient maize varieties.
磷是玉米生长和生产力的关键限制因素之一,低磷胁迫严重制约作物产量和稳定性。增强玉米在低磷胁迫下的生长能力并提高磷利用效率(PUE)对于实现高产稳产至关重要。磷酸盐转运体(PHT)家族蛋白在植物磷的吸收、转运和利用中起关键作用。在本研究中,我们系统地鉴定了玉米中的PHT基因家族,随后进行了系统发育、基因结构和表达谱分析。结果表明,这些基因广泛分布于玉米的10条染色体上,形成多个亚家族,其中PHT1亚家族数量最多。顺式调控元件分析表明,这些基因可能在植物应激反应和激素调节中起关键作用。缺磷和正常条件下的转录组分析显示了发育阶段和组织特异性表达模式,鉴定出了参与磷胁迫反应的候选基因,如 、 、 和 。本研究对玉米PHT基因家族进行了全面系统的分析,为提高磷利用效率和培育磷高效玉米品种提供了关键分子资源。