Zhou Wanting, Mo Yan, Ou Qiaofeng, Bai Shaowei
School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China.
College of Aeronautics Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Sensors (Basel). 2025 Feb 18;25(4):1245. doi: 10.3390/s25041245.
Cloud detection constitutes a pivotal task in remote sensing preprocessing, yet detecting cloud boundaries and identifying thin clouds under complex scenarios remain formidable challenges. In response to this challenge, we designed a network model, named NFCNet. The network comprises three submodules: the Hybrid Convolutional Attention Module (HCAM), the Spatial Pyramid Fusion Attention (SPFA) module, and the Dual-Stream Convolutional Aggregation (DCA) module. The HCAM extracts multi-scale features to enhance global representation while matching channel importance weights to focus on features that are more critical to the detection task. The SPFA module employs a novel adaptive feature aggregation method that simultaneously compensates for detailed information lost in the downsampling process and reinforces critical information in upsampling to achieve more accurate discrimination between cloud and non-cloud pixels. The DCA module integrates high-level features with low-level features to ensure that the network maintains its sensitivity to detailed information. Experimental results using the HRC_WHU, CHLandsat8, and 95-Cloud datasets demonstrate that the proposed algorithm surpasses existing optimal methods, achieving finer segmentation of cloud boundaries and more precise localization of subtle thin clouds.
云检测是遥感预处理中的一项关键任务,但在复杂场景下检测云边界和识别薄云仍然是巨大的挑战。针对这一挑战,我们设计了一种名为NFCNet的网络模型。该网络由三个子模块组成:混合卷积注意力模块(HCAM)、空间金字塔融合注意力(SPFA)模块和双流卷积聚合(DCA)模块。HCAM提取多尺度特征以增强全局表示,同时匹配通道重要性权重以聚焦于对检测任务更关键的特征。SPFA模块采用一种新颖的自适应特征聚合方法,该方法既能补偿下采样过程中丢失的详细信息,又能在上采样过程中强化关键信息,以实现云像素和非云像素之间更准确的区分。DCA模块将高级特征与低级特征集成,以确保网络对详细信息保持敏感性。使用HRC_WHU、CHLandsat8和95-Cloud数据集的实验结果表明,所提出的算法超越了现有的最优方法,实现了更精细的云边界分割和更精确的细微薄云定位。