Suppr超能文献

基于改进型 U-Net3 的遥感图像云雪检测

Cloud and snow detection of remote sensing images based on improved Unet3.

机构信息

School of Information Science and Electrical Engineering, Shan Dong Jiao Tong University, Jinan, 250357, China.

Institute of Automation, Shandong Academy of Sciences, Jinan, 250013, China.

出版信息

Sci Rep. 2022 Aug 24;12(1):14415. doi: 10.1038/s41598-022-18812-6.

Abstract

Cloud detection is an important step in remote sensing image processing and a prerequisite for subsequent analysis and interpretation of remote sensing images. Traditional cloud detection methods are difficult to accurately detect clouds and snow with very similar features such as color and texture. In this paper, the features of cloud and snow in remote sensing images are deeply extracted, and an accurate cloud and snow detection method is proposed based on the advantages of Unet3+ network in feature fusion. Firstly, color space conversion is performed on remote sensing images, RGB images and HIS images are used as input of Unet3+ network. Resnet 50 is used to replace the Unet3+ feature extraction network to extract remote sensing image features at a deeper level, and add the Convolutional Block Attention Module in Resnet50 to improve the network's attention to cloud and snow. Finally, the weighted cross entropy loss is constructed to solve the problem of unbalanced sample number caused by high proportion of background area in the image. The results show that the proposed method has strong adaptability and moderate computation. The mPA value, mIoU value and mPrecision value can reach 92.76%, 81.74% and 86.49%, respectively. Compared with other algorithms, the proposed method can better eliminate all kinds of interference information in remote sensing images of different landforms and accurately detect cloud and snow in images.

摘要

云检测是遥感图像处理的重要步骤,也是后续遥感图像分析和解译的前提。传统的云检测方法很难准确地检测出颜色和纹理等特征非常相似的云与雪。本文深入提取遥感图像中云与雪的特征,基于 U-net3+网络在特征融合方面的优势,提出了一种准确的云与雪检测方法。首先对遥感图像进行颜色空间转换,将 RGB 图像和 HIS 图像作为 U-net3+网络的输入。采用 Resnet50 替换 U-net3+特征提取网络,对遥感图像特征进行更深层次的提取,并在 Resnet50 中添加卷积注意力模块,提高网络对云与雪的注意力。最后,构建加权交叉熵损失函数,解决图像中背景区域比例高导致的样本数量不平衡问题。实验结果表明,该方法具有较强的适应性和适中的计算量,mPA 值、mIoU 值和 mPrecision 值分别可达 92.76%、81.74%和 86.49%,与其他算法相比,该方法能够更好地消除不同地貌遥感图像中的各种干扰信息,准确检测图像中的云与雪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e170/9402556/2e3fb2b33a7d/41598_2022_18812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验