Fin Margani Taise, Dos Santos Kelvin Sousa, Gualque Marcos William de Lima, Dos Santos Rafaela Cristine, Aoki Natália Cristina Morici, Auler Marcos Ereno, Fusco-Almeida Ana Marisa, Mendes-Gianinni Maria José Soares, Mainardes Rubiana Mara
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste (UNICENTRO), Alameda Élio Antônio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil.
Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil.
Pharmaceutics. 2025 Feb 11;17(2):231. doi: 10.3390/pharmaceutics17020231.
: Fungal infections caused by species remain a significant clinical challenge, exacerbated by limitations in current antifungal therapies, including toxicity and poor bioavailability. This study aimed to develop and evaluate voriconazole-loaded zein-pectin-hyaluronic acid nanoparticles (ZPHA-VRC NPs) as a novel drug delivery system to enhance efficacy and reduce toxicity. Alternative in vitro and in vivo models were utilized to assess the safety and therapeutic potential of the nanoparticles. : ZPHA-VRC NPs were prepared using a nanoprecipitation method and characterized for particle size, polydispersity index, zeta potential, and encapsulation efficiency. Antifungal activity was assessed via MIC assays against , , and . Cytotoxicity was evaluated on Vero cells, while in vivo toxicity and efficacy were assessed using and models. The therapeutic efficacy was further evaluated in an infected model using survival and health scores. : ZPHA-VRC nanoparticles exhibited favorable physicochemical properties, including a particle size of approximately 192 nm, a polydispersity index of 0.079, a zeta potential of -24 mV, and an encapsulation efficiency of 34%. The nanoparticles retained antifungal activity comparable to free voriconazole while significantly reducing cytotoxicity. In vivo studies using and demonstrated that ZPHA-VRC NPs markedly improved survival rates, reduced fungal burden, and enhanced health scores in infected models, outperforming the free drug. Additionally, the nanoparticles exhibited a superior safety profile, minimizing systemic toxicity while maintaining therapeutic efficacy. : ZPHA-VRC NPs offer a safer and more effective delivery system for VRC, addressing the limitations of conventional formulations. The integration of alternative efficacy and safety models highlights their value in preclinical research.
由该菌种引起的真菌感染仍然是一项重大的临床挑战,当前抗真菌疗法的局限性(包括毒性和生物利用度差)使这一挑战更加严峻。本研究旨在开发并评估载有伏立康唑的玉米醇溶蛋白-果胶-透明质酸纳米颗粒(ZPHA-VRC NPs)作为一种新型药物递送系统,以提高疗效并降低毒性。利用体外和体内替代模型评估纳米颗粒的安全性和治疗潜力。:采用纳米沉淀法制备ZPHA-VRC NPs,并对其粒径、多分散指数、zeta电位和包封率进行表征。通过针对[具体菌种1]、[具体菌种2]和[具体菌种3]的MIC测定评估抗真菌活性。在Vero细胞上评估细胞毒性,同时使用[动物模型1]和[动物模型2]评估体内毒性和疗效。在感染的[动物模型3]中使用生存率和健康评分进一步评估治疗效果。:ZPHA-VRC纳米颗粒表现出良好的物理化学性质,包括粒径约为192 nm、多分散指数为0.079、zeta电位为-24 mV以及包封率为34%。纳米颗粒保留了与游离伏立康唑相当的抗真菌活性,同时显著降低了细胞毒性。使用[动物模型1]和[动物模型2]的体内研究表明,ZPHA-VRC NPs在感染模型中显著提高了生存率、降低了真菌负荷并提高了健康评分,优于游离药物。此外,纳米颗粒表现出优异的安全性,在保持治疗效果的同时将全身毒性降至最低。:ZPHA-VRC NPs为VRC提供了一种更安全、更有效的递送系统,解决了传统制剂的局限性。替代疗效和安全性模型的整合突出了它们在临床前研究中的价值。