Suppr超能文献

通过下调硬脂酰辅酶A去饱和酶1增强脂肪酸氧化为心脏重编程提供能量。

Enhanced fatty acid oxidation via SCD1 downregulation fuels cardiac reprogramming.

作者信息

Jia Zhenhua, Xiang Lilin, Yu Zhangyi, Wang Lenan, Fang Junyan, Liu Mengxin, Wu Xin, Lu Zhibing, Wang Li

机构信息

Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China.

Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cardiovascular Intervention, Wuhan 430071, China.

出版信息

Mol Ther. 2025 Apr 2;33(4):1749-1768. doi: 10.1016/j.ymthe.2025.02.034. Epub 2025 Feb 24.

Abstract

Direct cardiac reprogramming has emerged as a promising therapeutic strategy to remuscularize injured myocardium. This approach converts non-contractile fibroblasts to induced cardiomyocytes (iCMs) that spontaneously contract, yet the intrinsic metabolic requirements driving cardiac reprogramming are not fully understood. Using single-cell metabolic flux estimation and flux balance analysis, we characterized the metabolic heterogeneity of iCMs and identified fatty acid oxidation (FAO) as a critical factor in iCM conversion. Both pharmacological and genetic inhibition of FAO impairs iCM generation. We further identified stearoyl-coenzyme A desaturase 1 (SCD1) as a metabolic switch that suppresses iCM reprogramming. Mechanistically, Scd1 knockdown activates PGC1α and PPARβ signaling, enhancing FAO-related gene expression and mitochondrial biogenesis, thereby improving reprogramming efficacy. Pharmacological manipulations targeting SCD1, PGC1α, and the PPARβ signaling axis further improved iCM generation and mitochondrial function. Our findings collectively highlight FAO as a key determinant of iCM fate and offer new therapeutic avenues for advancing reprogramming strategies.

摘要

直接心脏重编程已成为一种有前景的治疗策略,用于使受损心肌重新肌肉化。这种方法将非收缩性成纤维细胞转化为能自发收缩的诱导心肌细胞(iCMs),然而驱动心脏重编程的内在代谢需求尚未完全了解。利用单细胞代谢通量估计和通量平衡分析,我们表征了iCMs的代谢异质性,并确定脂肪酸氧化(FAO)是iCM转化的关键因素。FAO的药理抑制和基因抑制均会损害iCM的生成。我们进一步确定硬脂酰辅酶A去饱和酶1(SCD1)是一种抑制iCM重编程的代谢开关。从机制上讲,Scd1基因敲低会激活PGC1α和PPARβ信号通路,增强FAO相关基因表达和线粒体生物发生,从而提高重编程效率。针对SCD1、PGC1α和PPARβ信号轴的药理操作进一步改善了iCM的生成和线粒体功能。我们的研究结果共同强调FAO是iCM命运的关键决定因素,并为重编程策略的推进提供了新的治疗途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验