Suppr超能文献

脂肪酸氧化抑制可促进成年小鼠的心脏再生。

Inhibition of fatty acid oxidation enables heart regeneration in adult mice.

机构信息

Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.

Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany.

出版信息

Nature. 2023 Oct;622(7983):619-626. doi: 10.1038/s41586-023-06585-5. Epub 2023 Sep 27.

Abstract

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. ). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.

摘要

心肌细胞的出生后成熟过程的特征是代谢从糖酵解向脂肪酸氧化、染色质重构和细胞周期退出的转变,从而为成年心脏再生建立了障碍。在这里,为了探索代谢重编程是否可以克服这个障碍并实现心脏再生,我们通过失活 Cpt1b 来抑制心肌细胞中的脂肪酸氧化。我们发现,心肌细胞中脂肪酸氧化的失活可提高对缺氧的抵抗力并刺激心肌细胞增殖,从而允许在缺血再灌注损伤后进行心脏再生。代谢研究揭示了 Cpt1b 突变型心肌细胞中能量代谢的深刻变化和α-酮戊二酸的积累,导致α-酮戊二酸依赖性赖氨酸去甲基酶 KDM5 的激活(参考文献)。激活的 KDM5 去甲基化驱动心肌细胞成熟的基因中的广泛 H3K4me3 结构域,降低其转录水平,并将心肌细胞转变为更不成熟的状态,从而促进增殖。我们得出结论,代谢成熟塑造了心肌细胞的表观遗传景观,为进一步的细胞分裂制造了障碍。逆转这个过程可以允许修复受损的心脏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f69/10584682/15eeb4051a4e/41586_2023_6585_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验