Niemann Matthias, Matern Benedict M, Gupta Gaurav, Tanriover Bekir, Halleck Fabian, Budde Klemens, Spierings Eric
Research and Development, PIRCHE AG, Berlin, Germany.
Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.
Front Immunol. 2025 Feb 11;16:1548934. doi: 10.3389/fimmu.2025.1548934. eCollection 2025.
The immune-mediated rejection of transplanted organs is a complex interplay between T cells and B cells, where the recognition of HLA-derived epitopes plays a crucial role. Several algorithms of molecular compatibility have been suggested, each focusing on a specific aspect of epitope immunogenicity.
Considering reported death-censored graft survival in the SRTR dataset, we evaluated four models of molecular compatibility: antibody-verified Eplets, Snow, PIRCHE-II and amino acid matching. We have statistically evaluated their co-dependency and synergistic effects between models systematically on 400,935 kidney transplantations using Cox proportional hazards and XGBoost models.
Multivariable models of histocompatibility generally outperformed univariable predictors, with a combined model of HLA-A, -B, -DR matching, Snow and PIRCHE-II yielding highest AUC in XGBoost and lowest BIC in Cox models. Augmentation of a clinical prediction model of pre-transplant parameters by molecular compatibility metrics improved model performance particularly considering long-term outcomes.
Our study demonstrates that the use of multiple specialized molecular HLA matching predictors improves prediction performance, thereby improving risk classification and supporting informed decision-making in kidney transplantation.
移植器官的免疫介导排斥反应是T细胞和B细胞之间复杂的相互作用,其中HLA衍生表位的识别起着关键作用。已经提出了几种分子相容性算法,每种算法都侧重于表位免疫原性的特定方面。
考虑到SRTR数据集中报告的死亡截尾移植物存活率,我们评估了四种分子相容性模型:经抗体验证的表位(Eplets)、Snow、PIRCHE-II和氨基酸匹配。我们使用Cox比例风险模型和XGBoost模型,系统地对400,935例肾移植进行了统计评估,以研究各模型之间的相互依赖性和协同效应。
组织相容性多变量模型通常优于单变量预测指标,HLA-A、-B、-DR匹配、Snow和PIRCHE-II的组合模型在XGBoost模型中具有最高的AUC,在Cox模型中具有最低的BIC。通过分子相容性指标增强移植前参数的临床预测模型,特别是考虑长期结果时,可提高模型性能。
我们的研究表明,使用多种专门的分子HLA匹配预测指标可提高预测性能,从而改善风险分类并支持肾移植中的明智决策。