Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France.
Université Paul Sabatier, INSERM, Department of Nephrology and Organ Transplantation, CHU Rangueil and Purpan, Toulouse, France.
Kidney Int. 2023 May;103(5):936-948. doi: 10.1016/j.kint.2022.12.011. Epub 2022 Dec 23.
Machine learning (ML) models have recently shown potential for predicting kidney allograft outcomes. However, their ability to outperform traditional approaches remains poorly investigated. Therefore, using large cohorts of kidney transplant recipients from 14 centers worldwide, we developed ML-based prediction models for kidney allograft survival and compared their prediction performances to those achieved by a validated Cox-Based Prognostication System (CBPS). In a French derivation cohort of 4000 patients, candidate determinants of allograft failure including donor, recipient and transplant-related parameters were used as predictors to develop tree-based models (RSF, RSF-ERT, CIF), Support Vector Machine models (LK-SVM, AK-SVM) and a gradient boosting model (XGBoost). Models were externally validated with cohorts of 2214 patients from Europe, 1537 from North America, and 671 from South America. Among these 8422 kidney transplant recipients, 1081 (12.84%) lost their grafts after a median post-transplant follow-up time of 6.25 years (Inter Quartile Range 4.33-8.73). At seven years post-risk evaluation, the ML models achieved a C-index of 0.788 (95% bootstrap percentile confidence interval 0.736-0.833), 0.779 (0.724-0.825), 0.786 (0.735-0.832), 0.527 (0.456-0.602), 0.704 (0.648-0.759) and 0.767 (0.711-0.815) for RSF, RSF-ERT, CIF, LK-SVM, AK-SVM and XGBoost respectively, compared with 0.808 (0.792-0.829) for the CBPS. In validation cohorts, ML models' discrimination performances were in a similar range of those of the CBPS. Calibrations of the ML models were similar or less accurate than those of the CBPS. Thus, when using a transparent methodological pipeline in validated international cohorts, ML models, despite overall good performances, do not outperform a traditional CBPS in predicting kidney allograft failure. Hence, our current study supports the continued use of traditional statistical approaches for kidney graft prognostication.
机器学习 (ML) 模型最近在预测肾移植结局方面显示出了潜力。然而,它们超越传统方法的能力尚未得到充分研究。因此,我们使用来自全球 14 个中心的大量肾移植受者队列,开发了用于预测肾移植存活的基于机器学习的模型,并将其预测性能与经过验证的 Cox 预后系统 (CBPS) 的预测性能进行了比较。在法国的 4000 名患者推导队列中,使用包括供体、受体和移植相关参数在内的移植物衰竭的候选决定因素作为预测因子,开发了基于树的模型 (RSF、RSF-ERT、CIF)、支持向量机模型 (LK-SVM、AK-SVM) 和梯度提升模型 (XGBoost)。使用来自欧洲的 2214 名患者、北美 1537 名患者和南美 671 名患者的队列对模型进行了外部验证。在这 8422 名肾移植受者中,1081 名(12.84%)在中位移植后随访时间 6.25 年后(四分位间距 4.33-8.73)失去了移植物。在风险评估后的 7 年时,ML 模型的 C 指数为 0.788(95% bootstrap 百分位置信区间为 0.736-0.833)、0.779(0.724-0.825)、0.786(0.735-0.832)、0.527(0.456-0.602)、0.704(0.648-0.759)和 0.767(0.711-0.815),而 CBPS 的 C 指数为 0.808(0.792-0.829)。在验证队列中,ML 模型的判别性能与 CBPS 相似。ML 模型的校准与 CBPS 相比相似或不太准确。因此,在使用经过验证的国际队列中的透明方法学管道时,尽管机器学习模型总体表现良好,但在预测肾移植失败方面并未优于传统的 CBPS。因此,我们目前的研究支持继续使用传统的统计方法进行肾移植物预后预测。