Suppr超能文献

基于深度学习的psi CT网络能有效预测肝癌患者肝切除术后的早期复发。

A deep learning-based psi CT network effectively predicts early recurrence after hepatectomy in HCC patients.

作者信息

Yao Qianyun, Jia Weili, Zhang Tianchen, Chen Yan, Ding Guangmiao, Dang Zheng, Shi Shuai, Chen Chao, Qu Shen, Zhao Zihao, Pan Deng, Song Wenjie

机构信息

The First Affiliated Hospital of Air Force Medical University, Xi'an, China.

The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.

出版信息

Abdom Radiol (NY). 2025 Feb 26. doi: 10.1007/s00261-025-04849-4.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) exhibits a high recurrence rate, and early recurrence significantly jeopardizes patient prognosis, necessitating reliable methods for early recurrence prediction.

METHODS

Utilizing multi-institutional data and integrating deep learning (DL) techniques, we established a neural network based on DenseNet capable of concurrently processing patients' triphasic enhanced CT scans. By incorporating an attention mechanism, the model automatically focuses on regions that significantly impact patient survival. Performance metrics were first evaluated using the concordance index (C-index), calibration curves, and decision curves based on the training and validation cohorts. Finally, class activation map (CAM) techniques were employed to visualize the regions of interest identified by the model. After model construction, five-fold cross-validation was performed to assess overfitting risks and further evaluate model stability.

RESULTS

We retrospectively collected data from 302 cases across five centers, including patients who underwent Partial Hepatectomy between December 2016 and December 2022. During model development, 180 patients from Institution I formed the training cohort, while the remaining patients comprised the validation cohort. The area under the ROC curve (AUC) for two-year outcomes was 0.797 in the validation cohort. Calibration curves, survival curves, and decision curve analysis (DCA) demonstrated the model's robust performance. CAMs revealed that the model primarily focuses on intra-abdominal solid organs, consistent with clinical experience. After model development, datasets were merged for cross-validation. The best model achieved a C-index of 0.774 in the validation cohort, with five-fold cross-validation yielding an average C-index of 0.778. The 95% confidence interval (CI) for the C-index, derived from cross-validation, ranged from 0.762 to 0.793.

CONCLUSION

Our DL-based enhanced CT network shows promise in predicting early recurrence in patients, representing a potential new strategy for early recurrence prediction in HCC.

摘要

背景

肝细胞癌(HCC)复发率高,早期复发严重危及患者预后,因此需要可靠的早期复发预测方法。

方法

利用多机构数据并整合深度学习(DL)技术,我们建立了一个基于DenseNet的神经网络,能够同时处理患者的三相增强CT扫描。通过纳入注意力机制,该模型自动聚焦于对患者生存有显著影响的区域。首先基于训练和验证队列,使用一致性指数(C指数)、校准曲线和决策曲线评估性能指标。最后,采用类激活映射(CAM)技术可视化模型识别的感兴趣区域。模型构建后,进行五折交叉验证以评估过拟合风险并进一步评估模型稳定性。

结果

我们回顾性收集了来自五个中心的302例病例的数据,包括2016年12月至2022年12月期间接受部分肝切除术的患者。在模型开发过程中,来自机构I的180名患者组成训练队列,其余患者组成验证队列。验证队列中两年结果的ROC曲线下面积(AUC)为0.797。校准曲线、生存曲线和决策曲线分析(DCA)证明了模型的稳健性能。CAM显示该模型主要关注腹内实体器官,与临床经验一致。模型开发后,合并数据集进行交叉验证。最佳模型在验证队列中的C指数为0.774,五折交叉验证的平均C指数为0.778。交叉验证得出的C指数的95%置信区间(CI)为0.762至0.793。

结论

我们基于DL的增强CT网络在预测患者早期复发方面显示出前景,代表了一种潜在的HCC早期复发预测新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验