Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Nat Commun. 2024 Aug 15;15(1):7040. doi: 10.1038/s41467-024-51260-6.
Diagnosing liver lesions is crucial for treatment choices and patient outcomes. This study develops an automatic diagnosis system for liver lesions using multiphase enhanced computed tomography (CT). A total of 4039 patients from six data centers are enrolled to develop Liver Lesion Network (LiLNet). LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nodular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in four external centers and clinically verified in two hospitals, LiLNet achieves an accuracy (ACC) of 94.7% and an area under the curve (AUC) of 97.2% for benign and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%. LiLNet can aid in clinical diagnosis, especially in regions with a shortage of radiologists.
诊断肝脏病变对于治疗选择和患者预后至关重要。本研究开发了一种使用多期增强 CT 的肝脏病变自动诊断系统。共有来自六个数据中心的 4039 名患者被纳入肝脏病变网络(LiLNet)进行开发。LiLNet 可识别局灶性肝脏病变,包括肝细胞癌(HCC)、肝内胆管细胞癌(ICC)、转移性肿瘤(MET)、局灶性结节性增生(FNH)、血管瘤(HEM)和囊肿(CYST)。该系统在四个外部中心进行了验证,并在两家医院进行了临床验证,其对良性和恶性肿瘤的准确率(ACC)为 94.7%,曲线下面积(AUC)为 97.2%。对于 HCC、ICC 和 MET,ACC 为 88.7%,AUC 为 95.6%。对于 FNH、HEM 和 CYST,ACC 为 88.6%,AUC 为 95.9%。LiLNet 可辅助临床诊断,特别是在放射科医生短缺的地区。
Nat Commun. 2024-8-15
Hepatobiliary Pancreat Dis Int. 2013-4
J Gastroenterol Hepatol. 2011-6
Cancers (Basel). 2025-5-9
Abdom Radiol (NY). 2025-5-26
World J Gastroenterol. 2025-4-21
Abdom Radiol (NY). 2025-2-26
Diagnostics (Basel). 2025-1-10
Nat Commun. 2023-12-14
IEEE J Biomed Health Inform. 2023-9
IEEE J Biomed Health Inform. 2023-1