Bruckhoff Robin W, Becker Olga, Steinhilber Dieter, Suess Beatrix
Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt D-64287, Germany.
Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, Frankfurt am Main D-60438, Germany.
ACS Synth Biol. 2025 Mar 21;14(3):804-818. doi: 10.1021/acssynbio.4c00731. Epub 2025 Feb 26.
Synthetic riboswitches are attracting increasing interest for a diverse range of applications, including synthetic biology, functional genomics, and prospective therapeutic strategies. This study demonstrates that controlling alternative splicing with synthetic riboswitches represents a promising approach to effectively regulating transgene expression in mammalian cells. However, the function of synthetic riboswitches in the eukaryotic system in controlling gene expression is often limited to certain genes or cell types. So far, strategies to increase the dynamic range of regulation have been focused on adapting and modifying the riboswitch sequence itself without taking into account the context in which the riboswitch was inserted. In the present study, the tetracycline riboswitch was chosen to investigate the effects of the context and insertion site of a cassette exon within the gene to control the expression of an artificial arachidonate 5-lipoxygenase gene () in HEK293 cells. We demonstrate here that the use of riboswitch-controlled cassette exons for the control of gene expression via alternative splicing can be easily transferred to another gene through the process of contextual sequence adaptation. This was achieved through the introduction of gene-specific intronic and exonic sequences with different intron lengths and positions being tested. In contrast, the introduction of nonadapted constructs resulted in an unanticipated functionality outcome of the gene switch. Furthermore, we demonstrate that the combination of two cassette exons into a single gene resulted in a notable enhancement in the dynamic range. Finally, we generated a novel riboswitch-controlled splicing concept that enabled us to switch 5-LO wild-type to expression of an isoform that lacks exon 13 (5-LOΔ13). Taken together, this study demonstrates that synthetic riboswitches that control alternative splicing are a powerful tool to regulate gene expression when applied in combination with gene-specific intronic and exonic sequences.
合成核糖开关在包括合成生物学、功能基因组学和前瞻性治疗策略在内的各种应用中吸引了越来越多的关注。本研究表明,用合成核糖开关控制可变剪接是在哺乳动物细胞中有效调节转基因表达的一种有前景的方法。然而,合成核糖开关在真核系统中控制基因表达的功能通常仅限于某些基因或细胞类型。到目前为止,增加调控动态范围的策略一直集中在调整和修饰核糖开关序列本身,而没有考虑核糖开关插入的背景。在本研究中,选择四环素核糖开关来研究基因内盒式外显子的背景和插入位点对人胚肾293(HEK293)细胞中人工花生四烯酸5-脂氧合酶基因()表达的影响。我们在此证明,通过背景序列适配过程,使用核糖开关控制的盒式外显子通过可变剪接控制基因表达可以很容易地转移到另一个基因。这是通过引入具有不同内含子长度和位置的基因特异性内含子和外显子序列来实现的。相比之下,引入未适配的构建体会导致基因开关出现意外的功能结果。此外,我们证明将两个盒式外显子组合到一个基因中会导致动态范围显著增强。最后,我们生成了一种新型的核糖开关控制剪接概念,使我们能够将5-脂氧合酶野生型转换为缺乏外显子13的异构体(5-LOΔ13)的表达。综上所述,本研究表明,当与基因特异性内含子和外显子序列结合应用时,控制可变剪接的合成核糖开关是调节基因表达的有力工具。