Suppr超能文献

使用异质网络和增强负采样预测转录因子-靶基因关联

Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.

作者信息

Le Thanh Tuoi, Dang Xuan Tho

机构信息

Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.

Faculty of Information Technology, Vinh University of Technology Education, Vinh, Vietnam.

出版信息

Bioinform Biol Insights. 2025 Feb 25;19:11779322251316130. doi: 10.1177/11779322251316130. eCollection 2025.

Abstract

Identifying interactions between transcription factors (TFs) and target genes is crucial for understanding the molecular mechanisms involved in biological processes and diseases. Traditional biological experiments used to determine these interactions are often time-consuming, costly, and limited in scale. Current computational methods mainly predict binding sites rather than direct interactions. Although recent studies have achieved high performance in predicting TF-target gene associations, they still face a significant challenge related to constructing a robust dataset of positive and negative samples. Currently, methods do not adequately focus on selecting negative samples, resulting in incomplete coverage of potential TF-target gene relationships. This article proposes a method to select enhanced negative samples to improve the prediction performance of TF-target gene interactions. Experimental results show that the proposed method achieves an average area under the curve (AUC) value of 0.9024 ± 0.0008 through 5-fold cross-validation. These results demonstrate the model's high efficiency and accuracy, confirming its potential application in predicting TF-target gene interactions across various datasets and paving the way for large-scale biomedical research.

摘要

识别转录因子(TFs)与靶基因之间的相互作用对于理解生物过程和疾病所涉及的分子机制至关重要。用于确定这些相互作用的传统生物学实验通常耗时、成本高且规模有限。当前的计算方法主要预测结合位点而非直接相互作用。尽管最近的研究在预测TF-靶基因关联方面取得了高性能,但它们在构建正负样本的稳健数据集方面仍面临重大挑战。目前,方法没有充分关注负样本的选择,导致潜在的TF-靶基因关系覆盖不完整。本文提出了一种选择增强负样本的方法,以提高TF-靶基因相互作用的预测性能。实验结果表明,所提出的方法通过5折交叉验证实现了0.9024±0.0008的平均曲线下面积(AUC)值。这些结果证明了该模型的高效性和准确性,证实了其在跨各种数据集预测TF-靶基因相互作用中的潜在应用,并为大规模生物医学研究铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验