Suppr超能文献

基因调控网络推断作为松弛图匹配

Gene regulatory network inference as relaxed graph matching.

作者信息

Weighill Deborah, Guebila Marouen Ben, Lopes-Ramos Camila, Glass Kimberly, Quackenbush John, Platig John, Burkholz Rebekka

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115.

Channing Division of Network Medicine, Brigham and Women's Hospital.

出版信息

Proc AAAI Conf Artif Intell. 2021 Feb;35(11):10263-10272. Epub 2021 May 18.

Abstract

Bipartite network inference is a ubiquitous problem across disciplines. One important example in the field molecular biology is gene regulatory network inference. Gene regulatory networks are an instrumental tool aiding in the discovery of the molecular mechanisms driving diverse diseases, including cancer. However, only noisy observations of the projections of these regulatory networks are typically assayed. In an effort to better estimate regulatory networks from their noisy projections, we formulate a non-convex but analytically tractable optimization problem called OTTER. This problem can be interpreted as relaxed graph matching between the two projections of the bipartite network. OTTER's solutions can be derived explicitly and inspire a spectral algorithm, for which we provide network recovery guarantees. We also provide an alternative approach based on gradient descent that is more robust to noise compared to the spectral algorithm. Interestingly, this gradient descent approach resembles the message passing equations of an established gene regulatory network inference method, PANDA. Using three cancer-related data sets, we show that OTTER outperforms state-of-the-art inference methods in predicting transcription factor binding to gene regulatory regions. To encourage new graph matching applications to this problem, we have made all networks and validation data publicly available.

摘要

二分网络推理是一个跨学科的普遍问题。分子生物学领域的一个重要例子是基因调控网络推理。基因调控网络是一种有助于发现包括癌症在内的多种疾病驱动分子机制的工具。然而,通常只能检测到这些调控网络投影的有噪声观测值。为了从有噪声的投影中更好地估计调控网络,我们提出了一个非凸但解析可处理的优化问题,称为OTTER。这个问题可以解释为二分网络两个投影之间的松弛图匹配。OTTER的解可以显式推导出来,并启发了一种谱算法,我们为该算法提供了网络恢复保证。我们还提供了一种基于梯度下降的替代方法,与谱算法相比,该方法对噪声更具鲁棒性。有趣的是,这种梯度下降方法类似于一种成熟的基因调控网络推理方法PANDA的消息传递方程。使用三个与癌症相关的数据集,我们表明OTTER在预测转录因子与基因调控区域的结合方面优于现有最先进的推理方法。为了鼓励针对这个问题的新图匹配应用,我们已将所有网络和验证数据公开。

相似文献

1
Gene regulatory network inference as relaxed graph matching.
Proc AAAI Conf Artif Intell. 2021 Feb;35(11):10263-10272. Epub 2021 May 18.
2
Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question.
IEEE Trans Netw Sci Eng. 2021 Oct-Dec;8(4):3019-3033. doi: 10.1109/tnse.2021.3086508. Epub 2021 Jun 4.
3
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks.
Comput Struct Biotechnol J. 2020 Nov 5;18:3335-3343. doi: 10.1016/j.csbj.2020.10.022. eCollection 2020.
4
An algebra-based method for inferring gene regulatory networks.
BMC Syst Biol. 2014 Mar 26;8:37. doi: 10.1186/1752-0509-8-37.
6
Improving gene regulatory network inference and assessment: The importance of using network structure.
Front Genet. 2023 Feb 27;14:1143382. doi: 10.3389/fgene.2023.1143382. eCollection 2023.
7
Parametric and non-parametric gradient matching for network inference: a comparison.
BMC Bioinformatics. 2019 Jan 25;20(1):52. doi: 10.1186/s12859-018-2590-7.
8
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
9
Constrained Structure Learning for Scene Graph Generation.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11588-11599. doi: 10.1109/TPAMI.2023.3282889. Epub 2023 Sep 5.
10
Enhancing gene regulatory networks inference through hub-based data integration.
Comput Biol Chem. 2021 Dec;95:107589. doi: 10.1016/j.compbiolchem.2021.107589. Epub 2021 Oct 6.

引用本文的文献

1
Reconstructing Dynamic Gene Regulatory Networks Using f-Divergence from Time-Series scRNA-Seq Data.
Curr Issues Mol Biol. 2025 May 30;47(6):408. doi: 10.3390/cimb47060408.
2
Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.
Bioinform Biol Insights. 2025 Feb 25;19:11779322251316130. doi: 10.1177/11779322251316130. eCollection 2025.
4
Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently.
Proc AAAI Conf Artif Intell. 2021;35(8):6840-6849. doi: 10.1609/aaai.v35i8.16844. Epub 2021 May 18.
5
Reproducible processing of TCGA regulatory networks.
bioRxiv. 2024 Nov 7:2024.11.05.622163. doi: 10.1101/2024.11.05.622163.
6
Bayesian inference of sample-specific coexpression networks.
Genome Res. 2024 Oct 11;34(9):1397-1410. doi: 10.1101/gr.279117.124.
7
Biologically informed NeuralODEs for genome-wide regulatory dynamics.
Genome Biol. 2024 May 21;25(1):127. doi: 10.1186/s13059-024-03264-0.
9
Network-based drug repurposing for schizophrenia.
Neuropsychopharmacology. 2024 May;49(6):983-992. doi: 10.1038/s41386-024-01805-6. Epub 2024 Feb 6.
10
Advancing Biomedicine with Graph Representation Learning: Recent Progress, Challenges, and Future Directions.
Yearb Med Inform. 2023 Aug;32(1):215-224. doi: 10.1055/s-0043-1768735. Epub 2023 Dec 26.

本文引用的文献

1
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.
Genome Biol. 2022 Jun 10;23(1):126. doi: 10.1186/s13059-022-02690-2.
2
GRAND: a database of gene regulatory network models across human conditions.
Nucleic Acids Res. 2022 Jan 7;50(D1):D610-D621. doi: 10.1093/nar/gkab778.
3
Deep learning for inferring gene relationships from single-cell expression data.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):27151-27158. doi: 10.1073/pnas.1911536116. Epub 2019 Dec 10.
4
Resolving noise-control conflict by gene duplication.
PLoS Biol. 2019 Nov 22;17(11):e3000289. doi: 10.1371/journal.pbio.3000289. eCollection 2019 Nov.
5
Exploiting transfer learning for the reconstruction of the human gene regulatory network.
Bioinformatics. 2020 Mar 1;36(5):1553-1561. doi: 10.1093/bioinformatics/btz781.
8
Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism.
Cancer Res. 2018 Oct 1;78(19):5538-5547. doi: 10.1158/0008-5472.CAN-18-0454.
9
The Human Transcription Factors.
Cell. 2018 Feb 8;172(4):650-665. doi: 10.1016/j.cell.2018.01.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验