Suppr超能文献

通过垂直跳跃评估下肢最大肌肉力量

Estimation of maximum lower limb muscle strength from vertical jumps.

作者信息

Hou Chuan-Fang, Hsu Chin-Wei, Fuchs Philip X, Shiang Tzyy-Yuang

机构信息

Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.

Department of Sport and Kinesiology, National Taiwan Normal University, Taipei, Taiwan.

出版信息

PLoS One. 2025 Feb 27;20(2):e0316636. doi: 10.1371/journal.pone.0316636. eCollection 2025.

Abstract

Determining the one-repetition maximum (1RM) is crucial for organizing training loads, but it also is time-consuming, physically demanding, and poses a risk of injury. Vertical jumps are a less demanding and well-established method to test the ability of the lower limbs to generate great forces over a short time, which may allow for the estimation of 1RM in squatting. The purpose of this study was to develop a model for estimating 1RM back squat from ground reaction forces during vertical jumps. Thirteen healthy participants completed a 1RM back squat test, countermovement jumps, and squat jumps. Five kinematic and kinetic variables (e.g., peak and mean power, relative net impulse, jump height, and peak kinetic energy during various phases) were derived from ground reaction forces collected via a Kistler force plate (1000 Hz). Five out of 5 variables correlated with 1RM in countermovement jump and squat jump (ICC = .96-.98, r = .88-.95, p < .001 and ICC = .97-.99, r = .76-.90, p < .05, respectively). The most accurate stepwise regression model (adjusted R2 = .90, SEE =  13.24 kg, mean error =  7.4% of mean 1RMm, p < .001) estimated 1RM back squat based on peak kinetic energy during countermovement jumps. Estimation errors ranged from 7.4% to 10.7% of mean measured 1RM, with no differences between estimated and measured values (d <  0.01, p = .96-1.00). Estimating 1RM via jump tests may offer a practical alternative to traditional methods, reducing injury risks, testing intervals, and effort. Our study proposes a new possible approach for estimating 1RM back squat from jump forces, providing coaches and sports professionals with a more efficient tool to monitor and adjust training loads.

摘要

确定一次重复最大值(1RM)对于安排训练负荷至关重要,但它也很耗时、对身体要求高,并且存在受伤风险。垂直跳是一种要求较低且成熟的方法,用于测试下肢在短时间内产生大力的能力,这可能有助于估算深蹲时的1RM。本研究的目的是开发一种基于垂直跳期间地面反作用力估算1RM后深蹲的模型。13名健康参与者完成了1RM后深蹲测试、反向移动跳和深蹲跳。通过奇石乐测力台(1000Hz)收集的地面反作用力得出五个运动学和动力学变量(例如,不同阶段的峰值和平均功率、相对净冲量、跳高高和峰值动能)。5个变量中的5个与反向移动跳和深蹲跳中的1RM相关(组内相关系数ICC = 0.96 - 0.98,皮尔逊相关系数r = 0.88 - 0.95,p < 0.001;ICC = 0.97 - 0.99,r = 0.76 - 0.90,p < 0.05)。最准确的逐步回归模型(调整后R² = 0.90,标准误SEE = 13.24kg,平均误差 = 平均1RM的7.4%,p < 0.001)基于反向移动跳期间的峰值动能估算1RM后深蹲。估计误差范围为平均测量1RM的7.4%至10.7%,估计值与测量值之间无差异(效应量d < 0.01,p = 0.96 - 1.00)。通过跳跃测试估算1RM可能为传统方法提供一种实用的替代方案,降低受伤风险、测试间隔和工作量。我们的研究提出了一种从跳跃力估算1RM后深蹲的新的可能方法,为教练和体育专业人员提供了一个更有效的工具来监测和调整训练负荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef01/11867321/e80159b29f10/pone.0316636.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验