Vinci Doriana, Ridier Karl, Qi Fengfeng, Ardana-Lamas Fernando, Zalden Peter, Liu Lai Chung, Eklund Tobias, Jakobsen Mads Sielemann, Schubert Robin, Khakhulin Dmitry, Deiter Carsten, Bottin Nicolas, Yousef Hazem, von Stetten David, Łaski Piotr, Kamiński Radosław, Jarzembska Katarzyna N, Wallick Rachel F, Stensitzki Till, van der Veen Renske M, Müller-Werkmeister Henrike M, Molnár Gábor, Xiang Dao, Milne Christopher, Lorenc Maciej, Jiang Yifeng
European XFEL, Holzkoppel 4, Schenefeld, Germany.
Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse, 205 route de Narbonne, Toulouse, France.
Nat Commun. 2025 Feb 27;16(1):2043. doi: 10.1038/s41467-025-57202-0.
A comprehensive insight into ultrafast dynamics of photo-switchable materials is desired for efficient control of material properties through light excitation. Here, we study a polycrystalline spin crossover thin film as a prototypical example and reveal the sequential photo-switching dynamics, from local molecular rearrangement to global lattice deformation. On the earliest femtosecond timescale, the local molecular structural rearrangement occurs within a constant unit-cell volume through a two-step process, involving initial Fe-ligand bond elongation followed by ligand rotation. The highly-oriented structure of the nanocrystalline films and the experimental geometry enables resolving the full anisotropic lattice structural dynamics in and out of the sample plane separately. While both molecular switching and lattice heating influence lattice volume, they exert varying degrees of impact at disparate time scales following photoexcitation. This study highlights the opportunities provided by Mega-electron-volt electron and X-ray free electron laser to advance the understanding of ultrafast dynamics of photo-switchable materials.
为了通过光激发有效控制材料特性,需要全面深入地了解光开关材料的超快动力学。在此,我们研究一种多晶自旋交叉薄膜作为典型示例,并揭示从局部分子重排到整体晶格变形的顺序光开关动力学。在最早的飞秒时间尺度上,局部分子结构重排在恒定的晶胞体积内通过两步过程发生,包括初始的铁 - 配体键伸长,随后是配体旋转。纳米晶薄膜的高度取向结构和实验几何结构使得能够分别解析样品平面内外的全各向异性晶格结构动力学。虽然分子开关和晶格加热都影响晶格体积,但它们在光激发后的不同时间尺度上施加不同程度的影响。这项研究突出了兆电子伏特电子和X射线自由电子激光为推进对光开关材料超快动力学的理解所提供的机会。