Suppr超能文献

EHRAgent:代码助力大语言模型在电子健康记录上进行少样本复杂表格推理。

EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records.

作者信息

Shi Wenqi, Xu Ran, Zhuang Yuchen, Yu Yue, Zhang Jieyu, Wu Hang, Zhu Yuanda, Ho Joyce, Yang Carl, Wang May D

机构信息

Georgia Institute of Technology.

Emory University.

出版信息

Proc Conf Empir Methods Nat Lang Process. 2024 Nov;2024:22315-22339. doi: 10.18653/v1/2024.emnlp-main.1245.

Abstract

Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.

摘要

临床医生常常依赖数据工程师从电子健康记录(EHR)系统中检索复杂的患者信息,这一过程既低效又耗时。我们提出了EHRAgent,这是一个具备累积领域知识和强大编码能力的大语言模型(LLM)智能体。EHRAgent能够自主生成并执行代码,以便临床医生使用自然语言直接与电子健康记录进行交互。具体而言,我们将基于电子健康记录的多表推理任务制定为一个工具使用规划过程,有效地将复杂任务分解为一系列可通过外部工具集管理的操作。我们首先注入相关医学信息,使EHRAgent能够有效地对给定查询进行推理,从适当的表格中识别并提取所需记录。通过整合交互式编码和执行反馈,EHRAgent随后从错误消息中有效学习,并迭代改进其最初生成的代码。在三个真实世界的电子健康记录数据集上进行的实验表明,EHRAgent在成功率方面比最强基线高出29.6%,验证了其以最少演示解决复杂临床任务的强大能力。

相似文献

引用本文的文献

1
AI Agents in Clinical Medicine: A Systematic Review.临床医学中的人工智能代理:一项系统综述。
medRxiv. 2025 Aug 26:2025.08.22.25334232. doi: 10.1101/2025.08.22.25334232.
5
: Towards Autonomous Electronic Health Record Navigation.迈向自主电子健康记录导航
Res Sq. 2025 Mar 18:rs.3.rs-6102516. doi: 10.21203/rs.3.rs-6102516/v1.

本文引用的文献

1
Empowering biomedical discovery with AI agents.利用人工智能代理增强生物医学发现。
Cell. 2024 Oct 31;187(22):6125-6151. doi: 10.1016/j.cell.2024.09.022.
2
Augmenting large language models with chemistry tools.用化学工具增强大语言模型。
Nat Mach Intell. 2024;6(5):525-535. doi: 10.1038/s42256-024-00832-8. Epub 2024 May 8.
4
Autonomous chemical research with large language models.大语言模型驱动的自主化学研究。
Nature. 2023 Dec;624(7992):570-578. doi: 10.1038/s41586-023-06792-0. Epub 2023 Dec 20.
7
Foundation models for generalist medical artificial intelligence.通用型医学人工智能的基础模型。
Nature. 2023 Apr;616(7956):259-265. doi: 10.1038/s41586-023-05881-4. Epub 2023 Apr 12.
8
A large language model for electronic health records.用于电子健康记录的大型语言模型。
NPJ Digit Med. 2022 Dec 26;5(1):194. doi: 10.1038/s41746-022-00742-2.
10
Electronic health records to facilitate clinical research.电子健康记录助力临床研究。
Clin Res Cardiol. 2017 Jan;106(1):1-9. doi: 10.1007/s00392-016-1025-6. Epub 2016 Aug 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验