文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通用型医学人工智能的基础模型。

Foundation models for generalist medical artificial intelligence.

机构信息

Department of Computer Science, Stanford University, Stanford, CA, USA.

Department of Biomedical Informatics, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2023 Apr;616(7956):259-265. doi: 10.1038/s41586-023-05881-4. Epub 2023 Apr 12.


DOI:10.1038/s41586-023-05881-4
PMID:37045921
Abstract

The exceptionally rapid development of highly flexible, reusable artificial intelligence (AI) models is likely to usher in newfound capabilities in medicine. We propose a new paradigm for medical AI, which we refer to as generalist medical AI (GMAI). GMAI models will be capable of carrying out a diverse set of tasks using very little or no task-specific labelled data. Built through self-supervision on large, diverse datasets, GMAI will flexibly interpret different combinations of medical modalities, including data from imaging, electronic health records, laboratory results, genomics, graphs or medical text. Models will in turn produce expressive outputs such as free-text explanations, spoken recommendations or image annotations that demonstrate advanced medical reasoning abilities. Here we identify a set of high-impact potential applications for GMAI and lay out specific technical capabilities and training datasets necessary to enable them. We expect that GMAI-enabled applications will challenge current strategies for regulating and validating AI devices for medicine and will shift practices associated with the collection of large medical datasets.

摘要

高度灵活、可重复使用的人工智能 (AI) 模型的异常快速发展,可能会为医学带来新的能力。我们提出了一种新的医学人工智能范式,我们称之为通才医学人工智能 (GMAI)。GMAI 模型将能够使用很少或不需要特定于任务的标记数据来执行各种任务。通过在大型、多样化的数据集上进行自我监督构建,GMAI 将灵活地解释不同的医学模态组合,包括来自成像、电子健康记录、实验室结果、基因组学、图表或医学文本的数据。模型将反过来生成富有表现力的输出,例如自由文本解释、口语推荐或图像注释,展示高级医学推理能力。在这里,我们确定了一组对 GMAI 具有高影响力的潜在应用,并概述了启用它们所需的特定技术能力和培训数据集。我们预计,GMAI 支持的应用程序将挑战当前用于监管和验证医学人工智能设备的策略,并将改变与大型医疗数据集收集相关的实践。

相似文献

[1]
Foundation models for generalist medical artificial intelligence.

Nature. 2023-4

[2]
Advancing healthcare: the role and impact of AI and foundation models.

Am J Transl Res. 2024-6-15

[3]
Artificial intelligence in precision medicine in hepatology.

J Gastroenterol Hepatol. 2021-3

[4]
AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging.

Med Phys. 2023-2

[5]
Artificial intelligence-based methods for fusion of electronic health records and imaging data.

Sci Rep. 2022-10-26

[6]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

[7]
Digital twins: reimagining the future of cardiovascular risk prediction and personalised care.

Hellenic J Cardiol. 2025

[8]
How Cognitive Machines Can Augment Medical Imaging.

AJR Am J Roentgenol. 2018-11-13

[9]
Artificial intelligence in genetic services delivery: Utopia or apocalypse?

J Genet Couns. 2020-2

[10]
Artificial intelligence in cardiology: fundamentals and applications.

Intern Med J. 2022-6

引用本文的文献

[1]
Building the world's first truly global medical foundation model.

Nat Med. 2025-9-8

[2]
An MRI-pathology foundation model for noninvasive diagnosis and grading of prostate cancer.

Nat Cancer. 2025-9-2

[3]
A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

Nat Biomed Eng. 2025-9-2

[4]
Artificial Intelligence for Multiscale Spatial Analysis in Oncology: Current Applications and Future Implications.

Int J Mol Sci. 2025-8-19

[5]
Performance of DeepSeek and GPT Models on Pediatric Board Preparation Questions: Comparative Evaluation.

JMIR AI. 2025-8-27

[6]
Synthetic Scientific Image Generation with VAE, GAN, and Diffusion Model Architectures.

J Imaging. 2025-7-26

[7]
A Comparative Study of Five Large Language Models' Response for Liver Cancer Comprehensive Treatment.

J Hepatocell Carcinoma. 2025-8-20

[8]
Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025-6

[9]
Application of artificial intelligence chatbots in interpreting magnetic resonance imaging reports: a comparative study.

Sci Rep. 2025-8-25

[10]
Towards generalist foundation model for radiology by leveraging web-scale 2D&3D medical data.

Nat Commun. 2025-8-23

本文引用的文献

[1]
MIMIC-IV, a freely accessible electronic health record dataset.

Sci Data. 2023-1-3

[2]
A large language model for electronic health records.

NPJ Digit Med. 2022-12-26

[3]
Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing.

IEEE Trans Vis Comput Graph. 2023-1

[4]
Multimodal biomedical AI.

Nat Med. 2022-9

[5]
Self-supervised learning in medicine and healthcare.

Nat Biomed Eng. 2022-12

[6]
A Zoonotic Henipavirus in Febrile Patients in China.

N Engl J Med. 2022-8-4

[7]
Chest CT Findings in Hospitalized Patients with SARS-CoV-2: Delta versus Omicron Variants.

Radiology. 2023-1

[8]
Conditional generative modeling for de novo protein design with hierarchical functions.

Bioinformatics. 2022-6-27

[9]
Does your dermatology classifier know what it doesn't know? Detecting the long-tail of unseen conditions.

Med Image Anal. 2022-1

[10]
Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine.

Appl Clin Inform. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索