Wang Jingyi, Gao Haotian, Zhao Kunpeng, Wuliji Hexige, Zhao Binru, Ma Jie, Chen Xingyu, Zhang Jiawei, Sui Yanping, Wei Tian-Ran, Zhu Min, Shi Xun
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Wuzhen Laboratory, Tongxiang 314500, China.
Sci Adv. 2025 Feb 28;11(9):eadt6298. doi: 10.1126/sciadv.adt6298.
High-entropy materials have expanded the frontier for discovering uncharted physicochemical properties. The phenomenon of chemical fluctuation is ubiquitous in high-entropy materials, yet its role in the thermoelectric field is often overlooked. Herein, we designed and synthesized a series of (MgYbSrZn)(MgCdZnNa)(SbCa) samples characterized by ultrahigh configurational entropy. These samples exhibit a homogeneous single-phase structure at macroscopic and microscopic scales, yet display notable chemical fluctuations at the atomic to nanoscale. These fluctuations, along with the unusual atomic occupations, lead to an exceptionally low lattice thermal conductivity akin to that of amorphous materials. Combining the optimized carrier concentration and well-maintained carrier mobility, we ultimately achieved a high value of 1.2 at 750 kelvin, outperforming most previously reported ABSb-type Zintls. This study underscores that the atomic to nanoscale chemical fluctuations are the crucial catalyst for the enhanced thermoelectric performance in high-entropy materials.
高熵材料拓展了发现未知物理化学性质的前沿领域。化学涨落现象在高熵材料中普遍存在,但其在热电领域的作用却常常被忽视。在此,我们设计并合成了一系列具有超高组态熵的(MgYbSrZn)(MgCdZnNa)(SbCa)样品。这些样品在宏观和微观尺度上呈现出均匀的单相结构,但在原子到纳米尺度上却表现出显著的化学涨落。这些涨落,连同不寻常的原子占位,导致了类似于非晶材料的极低晶格热导率。结合优化的载流子浓度和良好保持的载流子迁移率,我们最终在750开尔文时实现了1.2的高值,超过了大多数先前报道的ABSb型津特耳化合物。这项研究强调,原子到纳米尺度的化学涨落是高熵材料中热电性能增强的关键催化剂。