Zhu Jinfeng, Ren Qingyong, Chen Chen, Wang Chen, Shu Mingfang, He Miao, Zhang Cuiping, Le Manh Duc, Torri Shuki, Wang Chin-Wei, Wang Jianli, Cheng Zhenxiang, Li Lisi, Wang Guohua, Jiang Yuxuan, Wu Mingzai, Qu Zhe, Tong Xin, Chen Yue, Zhang Qian, Ma Jie
Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2024 Mar 23;15(1):2618. doi: 10.1038/s41467-024-46895-4.
While phonon anharmonicity affects lattice thermal conductivity intrinsically and is difficult to be modified, controllable lattice defects routinely function only by scattering phonons extrinsically. Here, through a comprehensive study of crystal structure and lattice dynamics of Zintl-type Sr(Cu,Ag,Zn)Sb thermoelectric compounds using neutron scattering techniques and theoretical simulations, we show that the role of vacancies in suppressing lattice thermal conductivity could extend beyond defect scattering. The vacancies in SrZnSb significantly enhance lattice anharmonicity, causing a giant softening and broadening of the entire phonon spectrum and, together with defect scattering, leading to a ~ 86% decrease in the maximum lattice thermal conductivity compared to SrCuSb. We show that this huge lattice change arises from charge density reconstruction, which undermines both interlayer and intralayer atomic bonding strength in the hierarchical structure. These microscopic insights demonstrate a promise of artificially tailoring phonon anharmonicity through lattice defect engineering to manipulate lattice thermal conductivity in the design of energy conversion materials.
虽然声子非简谐性本质上会影响晶格热导率且难以改变,但可控的晶格缺陷通常仅通过外在地散射声子来发挥作用。在此,通过使用中子散射技术和理论模拟对津特耳型Sr(Cu,Ag,Zn)Sb热电化合物的晶体结构和晶格动力学进行全面研究,我们表明空位在抑制晶格热导率方面的作用可能超出缺陷散射。SrZnSb中的空位显著增强了晶格非简谐性,导致整个声子谱发生巨大软化和展宽,并且与缺陷散射一起,使得最大晶格热导率相比于SrCuSb降低了约86%。我们表明这种巨大的晶格变化源于电荷密度重构,这削弱了分层结构中层间和层内的原子键合强度。这些微观见解表明了通过晶格缺陷工程人工调节声子非简谐性以在能量转换材料设计中操控晶格热导率的前景。