Mohammed Musaab A A, Szabó Norbert P, Mikita Viktória, Szűcs Péter
Faculty of Earth and Environmental Sciences and Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary.
National Laboratory for Water Science and Water Security, Institute of Water Resources and Environmental Management, University of Miskolc, Miskolc, Hungary.
Environ Sci Pollut Res Int. 2025 Mar;32(11):6884-6903. doi: 10.1007/s11356-025-36175-z. Epub 2025 Mar 1.
Monitoring changes in groundwater quality over time helps identify time-dependent factors influencing water safety and supports the development of effective management strategies. This study investigates the spatiotemporal evolution of groundwater chemistry in the Debrecen area, Hungary, from 2019 to 2024, using indexing, machine learning, and multivariate statistical techniques. These techniques include self-organizing maps (SOM), hierarchical cluster analysis (HCA), principal component analysis (PCA), and groundwater quality indexing (GWQI). The hydrochemical analysis revealed that Ca-Mg-HCO₃ is the dominant water type, with a temporal shift toward Na-HCO₃, reflecting increased salinity driven by ongoing rock-water interactions. SOM analysis showed a transition from heterogeneous to more uniform groundwater chemistry over time, suggesting greater stability in the aquifer system. Elevated salinity zones shifted spatially due to changes in groundwater recharge and flow patterns, while hardness intensified and expanded, indicating continued carbonate dissolution. HCA highlighted temporal shifts in groundwater composition, with six clusters identified in 2019 and five clusters in 2024, reflecting a gradual homogenization of water quality. PCA further confirmed this trend, linking it to underlying hydrochemical processes, such as water-rock interactions, with limited contributions from anthropogenic influences. The GWQI analysis indicated a general improvement in groundwater quality over time, with most regions meeting drinking water standards. However, specific areas exhibited signs of localized contamination, requiring targeted management. These findings underscore the importance of continuous groundwater quality monitoring to detect emerging trends and guide resource management. The study highlights the need for sustainable practices to safeguard water resources and ensure long-term water security in the Debrecen area.
监测地下水水质随时间的变化有助于识别影响水安全的时间依赖性因素,并支持制定有效的管理策略。本研究利用索引、机器学习和多元统计技术,调查了2019年至2024年匈牙利德布勒森地区地下水化学的时空演变。这些技术包括自组织映射(SOM)、层次聚类分析(HCA)、主成分分析(PCA)和地下水质量指数(GWQI)。水化学分析表明,Ca-Mg-HCO₃是主要的水类型,随着时间的推移向Na-HCO₃转变,这反映了持续的岩石-水相互作用导致盐度增加。SOM分析表明,随着时间的推移,地下水化学从异质性向更均匀性转变,这表明含水层系统具有更大的稳定性。由于地下水补给和流动模式的变化,高盐度区域在空间上发生了转移,而硬度增强并扩大,表明碳酸盐持续溶解。HCA突出了地下水成分的时间变化,2019年识别出六个聚类,2024年识别出五个聚类,反映了水质的逐渐均匀化。PCA进一步证实了这一趋势,并将其与潜在的水化学过程(如水-岩相互作用)联系起来,人为影响的贡献有限。GWQI分析表明,随着时间的推移,地下水质量总体有所改善,大多数地区符合饮用水标准。然而,特定区域出现了局部污染的迹象,需要进行有针对性的管理。这些发现强调了持续进行地下水质量监测以检测新出现趋势并指导资源管理的重要性。该研究强调了采取可持续做法以保护水资源并确保德布勒森地区长期水安全的必要性。