Suppr超能文献

一种用于水质指数的地下水质量评估模型:结合主成分分析、熵权法和变异系数法进行降维和权重优化及其应用

A Groundwater Quality Assessment Model for Water Quality Index: Combining Principal Component Analysis, Entropy Weight Method, and Coefficient of Variation Method for Dimensionality Reduction and Weight Optimization, and Its Application.

作者信息

Zhang Beibei, Hu Xin, Li Bo, Wu Pan, Cai Xutao, Luo Ye, Deng Xiangzhao, Jiang Mingming

机构信息

College of Architectural Science and Engineering, Guiyang University, Guiyang, China.

Guizhou Zhengye Engineering & Technology Investment Co., Ltd, Guiyang, China.

出版信息

Water Environ Res. 2024 Dec;96(12):e11155. doi: 10.1002/wer.11155.

Abstract

Groundwater underpins water supply for most of the world's regions, yet its sustainable utilization has been markedly compromised by inappropriate exploitation and a multitude of pollution sources. Water quality evaluation has emerged as an essential strategy to guarantee the optimized utilization and vigilant conservation of water resources. In this study, principal component analysis (PCA), entropy weight method (EWM), coefficient of variation method (CVM), and Water Quality Index (WQI) were used to construct an integrated WQI groundwater quality assessment model that integrates PCA-CVM-EWM for dimensionality reduction and weight optimization. Taking a village in Shandong Province, China, as an example, PCA identified seven evaluation indicators. The CVM-EWM were coupled to calculate comprehensive weights through the principle of minimum information entropy, followed by a comprehensive assessment of groundwater quality based on WQI values. The results indicated that Class III groundwater predominated in the study area, accounting for 74%, with localized pollution present. The hydrochemical type of the groundwater was primarily SO·HCO-Ca, significantly influenced by human activities. The coefficients of variation for Fe, Mn, and NH-N all exceeded 1. Compared to other methods, the optimized WQI model demonstrated superior performance in the selection of evaluative indicators, weight distribution, and comprehensive water quality assessment, showing a distinct advantage for water quality data with numerous hydrochemical indicators and substantial coefficients of variation. The findings provided a scientific reference for diagnosing groundwater quality issues and formulating preventive and control measures. PRACTITIONER POINTS: A comprehensive water quality index evaluation model was constructed. Optimized steps for selecting indicators and assigning weights for the water quality index model. Selection of evaluation indicators based on indicator correlation analysis. The variability of hydrochemical data is considered.

摘要

地下水是世界上大多数地区供水的基础,但由于不合理的开采和众多污染源,其可持续利用受到了显著影响。水质评价已成为保障水资源优化利用和严格保护的一项重要策略。在本研究中,主成分分析(PCA)、熵权法(EWM)、变异系数法(CVM)和水质指数(WQI)被用于构建一个综合的WQI地下水水质评价模型,该模型集成了PCA-CVM-EWM进行降维和权重优化。以中国山东省的一个村庄为例,PCA确定了七个评价指标。通过最小信息熵原理将CVM-EWM耦合以计算综合权重,然后基于WQI值对地下水水质进行综合评价。结果表明,研究区域内Ⅲ类地下水占主导,占74%,存在局部污染。地下水水化学类型主要为SO·HCO-Ca,受人类活动影响显著。Fe、Mn和NH-N的变异系数均超过1。与其他方法相比,优化后的WQI模型在评价指标选择、权重分配和综合水质评价方面表现更优,对于具有众多水化学指标和较大变异系数的水质数据具有明显优势。研究结果为诊断地下水水质问题和制定预防控制措施提供了科学参考。从业者要点:构建了综合水质指数评价模型。水质指数模型指标选择和权重分配的优化步骤。基于指标相关性分析选择评价指标。考虑了水化学数据的变异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验