Suppr超能文献

使用混合数据映射社会经济地位:一种分层贝叶斯方法。

Mapping socio-economic status using mixed data: a hierarchical Bayesian approach.

作者信息

Virgili-Gervais Gabrielle, Schmidt Alexandra M, Bixby Honor, Cavanaugh Alicia, Owusu George, Agyei-Mensah Samuel, Robinson Brian, Baumgartner Jill

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.

Institute of Public Health and Wellbeing, University of Essex, Colchester, UK.

出版信息

J R Stat Soc Ser A Stat Soc. 2024 Aug 20:qnae080. doi: 10.1093/jrsssa/qnae080.

Abstract

We propose a Bayesian hierarchical model to estimate a socio-economic status (SES) index based on mixed dichotomous and continuous variables. In particular, we extend Quinn's ([2004]. Bayesian factor analysis for mixed ordinal and continuous responses. (4), 338-353. https://doi.org/10.1093/pan/mph022) and Schliep and Hoeting's ([2013]. Multilevel latent Gaussian process model for mixed discrete and continuous multivariate response data. (4), 492-513. https://doi.org/10.1007/s13253-013-0136-z) factor analysis models for mixed dichotomous and continuous variables by allowing a spatial hierarchical structure of key parameters of the model. Unlike most SES assessment models proposed in the literature, the hierarchical nature of this model enables the use of census observations at the household level without needing to aggregate any information . Therefore, it better accommodates the variability of the SES between census tracts and the number of households per area. The proposed model is used in the estimation of a socio-economic index using 10% of the 2010 Ghana census in the Greater Accra Metropolitan area. Out of the 20 observed variables, the number of people per room, access to water piping and flushable toilets differentiated high and low SES areas the best.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验