Choi Wiha, Jeong Hieyong, Oh Sehoon, Jung Tae-Du
Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 711-785 Republic of Korea.
Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbongro, Bukgu, Gwangju, 61186 Republic of Korea.
Biomed Eng Lett. 2025 Jan 9;15(2):301-310. doi: 10.1007/s13534-024-00448-2. eCollection 2025 Mar.
This study aims to establish a methodology for classifying gait patterns in patients with hip osteoarthritis without the use of wearable sensors. Although patients with the same pathological condition may exhibit significantly different gait patterns, an accurate and efficient classification system is needed: one that reduces the effort and preparation time for both patients and clinicians, allowing gait analysis and classification without the need for cumbersome sensors like EMG or camera-based systems. The proposed methodology follows three key steps. First, ground reaction forces are measured in three directions-anterior-posterior, medial-lateral, and vertical-using a force plate during gait analysis. These force data are then evaluated through two approaches: trend similarity is assessed using the Pearson correlation coefficient, while scale similarity is measured with the Symmetric Mean Absolute Percentage Error (SMAPE), comparing results with healthy controls. Finally, Gaussian Mixture Models (GMM) are applied to cluster both healthy controls and patients, grouping the patients into distinct categories based on six quantified metrics derived from the correlation and SMAPE. Using the proposed methodology, 16 patients with hip osteoarthritis were successfully categorized into two distinct gait groups (Group 1 and Group 2). The gait patterns of these groups were further analyzed by comparing joint moments and angles in the lower limbs among healthy individuals and the classified patient groups. This study demonstrates that gait pattern classification can be reliably achieved using only force-plate data, offering a practical tool for personalized rehabilitation in hip osteoarthritis patients. By incorporating quantitative variables that capture both gait trends and scale, the methodology efficiently classifies patients with just 2-3 ms of natural walking. This minimizes the burden on patients while delivering a more accurate and realistic assessment. The proposed approach maintains a level of accuracy comparable to more complex methods, while being easier to implement and more accessible in clinical settings.
本研究旨在建立一种无需使用可穿戴传感器对髋骨关节炎患者步态模式进行分类的方法。尽管患有相同病理状况的患者可能表现出显著不同的步态模式,但仍需要一个准确且高效的分类系统:该系统能够减少患者和临床医生的工作量及准备时间,实现无需诸如肌电图或基于摄像头的系统等笨重传感器的步态分析和分类。所提出的方法遵循三个关键步骤。首先,在步态分析过程中使用测力板在三个方向(前后、内外侧和垂直方向)测量地面反作用力。然后通过两种方法评估这些力数据:使用皮尔逊相关系数评估趋势相似性,同时用对称平均绝对百分比误差(SMAPE)测量尺度相似性,并将结果与健康对照组进行比较。最后,应用高斯混合模型(GMM)对健康对照组和患者进行聚类,根据从相关性和SMAPE得出的六个量化指标将患者分为不同类别。使用所提出的方法,16名髋骨关节炎患者成功地被分为两个不同的步态组(第1组和第2组)。通过比较健康个体和分类后的患者组下肢的关节力矩和角度,进一步分析了这些组的步态模式。本研究表明,仅使用测力板数据就能可靠地实现步态模式分类,为髋骨关节炎患者的个性化康复提供了一种实用工具。通过纳入能够捕捉步态趋势和尺度的定量变量,该方法仅需2 - 3毫秒的自然行走就能有效地对患者进行分类。这在减轻患者负担的同时,提供了更准确和现实的评估。所提出的方法保持了与更复杂方法相当的准确性水平,同时更易于实施且在临床环境中更具可及性。