Suppr超能文献

使用FLORAL将高维纵向微生物特征与随时间变化的结果相关联。

Correlating High-dimensional longitudinal microbial features with time-varying outcomes with FLORAL.

作者信息

Fei Teng, Donovan Victoria, Funnell Tyler, Baichoo Mirae, Waters Nicholas R, Paredes Jenny, Dai Anqi, Castro Francesca, Haber Jennifer, Gradissimo Ana, Raj Sandeep S, Lesokhin Alexander M, Shah Urvi A, van den Brink Marcel R M, Peled Jonathan U

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center.

Department of Biostatistics, Harvard T.H. Chan School of Public Health.

出版信息

bioRxiv. 2025 Feb 19:2025.02.17.638558. doi: 10.1101/2025.02.17.638558.

Abstract

Correlating time-dependent patient characteristics and matched microbiome samples can be helpful to identify biomarkers in longitudinal microbiome studies. Existing approaches typically repeat a pre-specified modeling approach for all taxonomic features, followed by a multiple testing adjustment step for false discovery rate (FDR) control. In this work, we develop an alternative strategy of using log-ratio penalized generalized estimating equations, which directly models the longitudinal patient characteristic of interest as the outcome variable and treats microbial features as high-dimensional compositional covariates. A cross validation procedure is developed for variable selection and model selection among different working correlation structures. In extensive simulations, the proposed method achieved superior sensitivity over the state-of-the-art methods with robustly controlled FDR. In the analyses of correlating longitudinal dietary intake and microbial features from matched samples of cancer patients, the proposed method effectively identified gut health indicators and clinically relevant microbial markers, showing robust utilities in real-world applications. The method is implemented under the open-source R package FLORAL, which is available at (https://vdblab.github.io/FLORAL/).

摘要

在纵向微生物组研究中,将随时间变化的患者特征与匹配的微生物组样本进行关联,有助于识别生物标志物。现有方法通常对所有分类特征重复预先指定的建模方法,然后进行多重检验调整步骤以控制错误发现率(FDR)。在这项工作中,我们开发了一种使用对数比率惩罚广义估计方程的替代策略,该策略直接将感兴趣的纵向患者特征建模为结果变量,并将微生物特征视为高维组成协变量。我们开发了一种交叉验证程序,用于在不同的工作相关结构中进行变量选择和模型选择。在广泛的模拟中,所提出的方法在稳健控制FDR的情况下,比现有方法具有更高的灵敏度。在对癌症患者匹配样本的纵向饮食摄入与微生物特征进行关联分析时,所提出的方法有效地识别了肠道健康指标和临床相关的微生物标志物,在实际应用中显示出强大的实用性。该方法在开源R包FLORAL中实现,可在(https://vdblab.github.io/FLORAL/)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d150/11870566/f972aa12b290/nihpp-2025.02.17.638558v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验