Suppr超能文献

机器学习驱动的法医学相关化学化合物色谱图、质荷比图和红外光谱的数据融合

Machine Learning-Driven Data Fusion of Chromatograms, Plasmagrams, and IR Spectra of Chemical Compounds of Forensic Interest.

作者信息

Felizzato Giorgio, Iacobellis Giuliano, Liberatore Nicola, Mengali Sandro, Sabo Martin, Scandurra Patrizia, Viola Roberto, Romolo Francesco Saverio

机构信息

University of Bergamo, Via Moroni 255, Bergamo 24127, Italy.

Raggruppamento Carabinieri Investigazioni Scientifiche, Reparto Ricerca e Sviluppo of Rome, Viale di Tor di Quinto, 119, Rome 00191, Italy.

出版信息

ACS Omega. 2025 Feb 11;10(7):7048-7057. doi: 10.1021/acsomega.4c10107. eCollection 2025 Feb 25.

Abstract

Achieving fast analytical results on-site with the highest possible accuracy in forensic analyses is crucial for investigations. While portable sensors are essential for crime scene analysis, they often face limitations in sensitivity and specificity, especially due to environmental factors. Data fusion (DF) techniques can enhance accuracy and reliability by combining information from multiple sensors. This study develops different DF approaches using data from two sensors: ion mobility spectrometry (IMS) and gas chromatography-quartz-enhanced photoacoustic spectroscopy (GC-QEPAS), aiming to improve the safety of crime scene operators and the accuracy of on-site forensic analysis. Two DF approaches were developed for acetone and DMMP: low-level (LLDF) and mid-level (MLDF), meanwhile a high-level (HLDF) approach was applied to TATP. LLDF concatenated preprocessed data matrices, while MLDF employed principal component analysis for feature extraction. LLDF and MLDF used one-class support vector machines (OC-SVM) for classification, while HLDF combined OC-SVM for IMS and SIMCA for GC-QEPAS. Sensor location within crime scenes was established using traditional measuring tape and laser distance meters, with a 1 m cutoff distance between sensors deemed appropriate for indoor crime scenes. LLDF achieved high accuracy but was sensitive to concentration variations, while MLDF enhanced the classification robustness. HLDF allowed for independent sensor use in real scenarios. All of the methods reached 100% accuracy for DMMP and acetone, and the MLDF approach was the fastest among the DF methods, demonstrating its potential for rapid applications. DF approaches can significantly enhance the safety and accuracy of forensic investigations, with future research planned to extend data sets and include more sensors.

摘要

在法医分析中实现现场快速分析结果并尽可能提高准确性对调查至关重要。虽然便携式传感器对犯罪现场分析至关重要,但它们在灵敏度和特异性方面往往面临限制,尤其是由于环境因素。数据融合(DF)技术可以通过组合来自多个传感器的信息来提高准确性和可靠性。本研究利用来自两种传感器的数据开发了不同的DF方法:离子迁移谱(IMS)和气相色谱 - 石英增强光声光谱(GC - QEPAS),旨在提高犯罪现场操作人员的安全性和现场法医分析的准确性。针对丙酮和甲基膦酸二甲酯(DMMP)开发了两种DF方法:低水平(LLDF)和中水平(MLDF),同时针对三过氧化三丙酮(TATP)应用了高水平(HLDF)方法。LLDF连接预处理后的数据矩阵,而MLDF采用主成分分析进行特征提取。LLDF和MLDF使用一类支持向量机(OC - SVM)进行分类,而HLDF将IMS的OC - SVM和GC - QEPAS的软独立建模类比法(SIMCA)相结合。使用传统卷尺和激光测距仪确定犯罪现场内传感器的位置,对于室内犯罪现场,传感器之间1米的截止距离被认为是合适的。LLDF实现了高精度,但对浓度变化敏感,而MLDF增强了分类的稳健性。HLDF允许在实际场景中独立使用传感器。所有方法对DMMP和丙酮的准确率均达到100%,并且MLDF方法是DF方法中最快的,展示了其快速应用的潜力。DF方法可以显著提高法医调查的安全性和准确性,未来计划开展研究以扩展数据集并纳入更多传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e083/11865979/18ef6741af85/ao4c10107_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验