Suppr超能文献

转酮醇酶包封到 - 组装蛋白纳米隔室中可提高热稳定性。

Encapsulation of Transketolase into -Assembled Protein Nanocompartments Improves Thermal Stability.

机构信息

Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, U.K.

出版信息

ACS Appl Bio Mater. 2024 Jun 17;7(6):3660-3674. doi: 10.1021/acsabm.3c01153. Epub 2024 Jun 4.

Abstract

Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous reassembly studies, we first investigated the effectiveness of reassembly and cargo-loading of two size classes of encapsulins = 1 and = 3, using superfolder Green Fluorescent Protein. We show that the empty capsid reassembles with higher yield than the capsid and that loading promotes the formation of the = 3 capsid form over the = 1 form, while overloading with cargo results in malformed = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that loading of transketolase into the = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of assembled encapsulins with applications in cargo stabilization.

摘要

蛋白质隔室提供了具有很大设计潜力的明确结构,特别引起了绿色化学和治疗应用的关注。蛋白质隔室的一个家族是包膜体,它们是简单的原核纳米隔室,可由单个单体自组装成具有 18 至 42nm 之间的选择性渗透性笼。在过去的十年中,利用其定义的货物加载机制和重复的表面展示,已经开发出了多种应用组合的包膜体。尽管已经证明非天然货物蛋白的封装可以提供对蛋白酶活性的保护,但将货物封装在包膜体中所产生的热效应仍然知之甚少。本研究旨在建立一种将报告蛋白加载到热稳定包膜体中的方法,以确定货物的稳定性变化。基于之前的重组研究,我们首先使用超折叠绿色荧光蛋白 (sfGFP) 研究了两种大小的包膜体 = 1 和 = 3 的重组和货物加载的有效性。我们表明,空壳的重组产率高于 壳,而 加载促进了 壳的形成,而超过货物负载则导致 1 壳的畸形形成。对于稳定性研究,然后将工业相关酶货物转酮醇酶(一种通过Förster 共振能量转移 (FRET) 探测的货物)装入 包膜体中。我们的结果表明,特异性正交 FRET 标记可以揭示封装货物热解折叠的变化,这表明转酮醇酶装入 1 壳包膜体增加了酶的热稳定性。这项工作支持了充分利用组装包膜体的结构、空间和功能控制的趋势,这在货物稳定化方面具有应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9103/11190991/326aeddabdbc/mt3c01153_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验