Suppr超能文献

使用深度学习确定古典阿拉伯诗歌的韵律:性能分析

Determining the meter of classical Arabic poetry using deep learning: a performance analysis.

作者信息

Mutawa A M, Alrumaih Ayshah

机构信息

Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait.

Department of Computer Sciences, University of Hamburg, Hamburg, Germany.

出版信息

Front Artif Intell. 2025 Feb 14;8:1523336. doi: 10.3389/frai.2025.1523336. eCollection 2025.

Abstract

The metrical structure of classical Arabic poetry, deeply rooted in its rich literary heritage, is governed by 16 distinct meters, making its analysis both a linguistic and computational challenge. In this study, a deep learning-based approach was developed to accurately determine the meter of Arabic poetry using TensorFlow and a large dataset. Character-level encoding was employed to convert text into integers, enabling the classification of both full-verse and half-verse data. In particular, the data were evaluated without removing diacritics, preserving critical linguistic features. A train-test-split method with a 70-15-15 division was utilized, with 15% of the total dataset reserved as unseen test data for evaluation across all models. Multiple deep learning architectures, including long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (Bi-LSTM), were tested. Among these, the bidirectional long short-term memory model achieved the highest accuracy, with 97.53% for full-verse and 95.23% for half-verse data. This study introduces an effective framework for Arabic meter classification, contributing significantly to the application of artificial intelligence in natural language processing and text analytics.

摘要

古典阿拉伯诗歌的韵律结构深深植根于其丰富的文学遗产,由16种不同的韵律支配,这使得对其进行分析既是一项语言挑战,也是一项计算挑战。在本研究中,开发了一种基于深度学习的方法,使用TensorFlow和一个大型数据集来准确确定阿拉伯诗歌的韵律。采用字符级编码将文本转换为整数,从而能够对整行和半行数据进行分类。特别是,在评估数据时没有去除变音符,保留了关键的语言特征。使用了一种70-15-15划分的训练-测试分割方法,将总数据集的15%留作未见测试数据,用于评估所有模型。测试了多种深度学习架构,包括长短期记忆(LSTM)、门控循环单元(GRU)和双向长短期记忆(Bi-LSTM)。其中,双向长短期记忆模型的准确率最高,整行数据的准确率为97.53%,半行数据的准确率为95.23%。本研究为阿拉伯韵律分类引入了一个有效的框架,为人工智能在自然语言处理和文本分析中的应用做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf8/11868067/0f1437fe1278/frai-08-1523336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验