Han Minhi, Joung Joonyoung F, Jeong Minseok, Choi Dong Hoon, Park Sungnam
Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Korea.
ACS Cent Sci. 2024 Aug 30;11(2):219-227. doi: 10.1021/acscentsci.4c00656. eCollection 2025 Feb 26.
Innovative approaches to design molecules with tailored properties are required in various research areas. Deep learning methods can accelerate the discovery of new materials by leveraging molecular structure-property relationships. In this study, we successfully developed a generative deep learning (Gen-DL) model that was trained on a large experimental database (DB) including 71,424 molecule/solvent pairs and was able to design molecules with target properties in various solvents. The Gen-DL model can generate molecules with specified optical properties, such as electronic absorption/emission peak position and bandwidth, extinction coefficient, photoluminescence (PL) quantum yield, and PL lifetime. The Gen-DL model was shown to leverage the essential design principles of conjugation effects, Stokes shifts, and solvent effects when it generated molecules with target optical properties. Additionally, the Gen-DL model was demonstrated to generate practically useful molecules developed for real-world applications. Accordingly, the Gen-DL model can be a promising tool for the discovery and design of novel molecules with tailored properties in various research areas, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic photodiodes (OPDs), bioimaging dyes, and so on.
在各个研究领域都需要创新的方法来设计具有定制属性的分子。深度学习方法可以通过利用分子结构-属性关系来加速新材料的发现。在本研究中,我们成功开发了一种生成式深度学习(Gen-DL)模型,该模型在一个包含71424个分子/溶剂对的大型实验数据库(DB)上进行训练,能够设计出在各种溶剂中具有目标属性的分子。Gen-DL模型可以生成具有特定光学属性的分子,如电子吸收/发射峰位置和带宽、消光系数、光致发光(PL)量子产率和PL寿命。当Gen-DL模型生成具有目标光学属性的分子时,它被证明利用了共轭效应、斯托克斯位移和溶剂效应的基本设计原理。此外,Gen-DL模型被证明能够生成用于实际应用的实用分子。因此,Gen-DL模型可以成为在各个研究领域中发现和设计具有定制属性的新型分子的有前途的工具,如有机光伏(OPV)、有机发光二极管(OLED)、有机光电二极管(OPD)、生物成像染料等。