Belhaouari Samir Brahim, Talbi Abdelhamid, Elgamal Mahmoud, Elmagarmid Khadija Ahmed, Ghannoum Shaimaa, Yang Yanjun, Zhao Yiping, Zughaier Susu M, Bensmail Halima
Hamad Bin Khalifa University, Department of Computer Sciences and Engineering, Doha, Qatar.
Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar.
Heliyon. 2025 Feb 8;11(4):e42550. doi: 10.1016/j.heliyon.2025.e42550. eCollection 2025 Feb 28.
To classify raw SERS Raman spectra from biological materials, we propose , a new architecture inspired by the Progressive Fourier Transform and integrated with the scalogram transformation approach. Unlike standard machine learning approaches such as PCA, LDA, SVM, RF, GBM etc, functions independently, requiring no human interaction, and can be used to much smaller datasets than traditional CNNs. Performance of DeepRaman on 14 endotoxins bacteria and on a public data achieved an extraordinary accuracy of 99 percent. This provides exact endotoxin classification and has tremendous potential for accelerated medical diagnostics and treatment decision-making in cases of pathogenic infections.
Bacterial endotoxin, a lipopolysaccharide exuded by bacteria during their growth and infection process, serves as a valuable biomarker for bacterial identification. It is a vital component of the outer membrane layer in Gram-negative bacteria. By employing silver nanorod-based array substrates, surface-enhanced Raman scattering (SERS) spectra were obtained for two separate datasets: Eleven endotoxins produced by bacteria, each having an 8.75 pg average detection quantity per measurement, and three controls chitin, lipoteichoic acid (LTA), bacterial peptidoglycan (PGN), because their structures differ greatly from those of LPS.
This study utilized various classical machine learning techniques, such as support vector machines, k-nearest neighbors, and random forests, in conjunction with a modified deep learning approach called DeepRaman. These algorithms were employed to distinguish and categorize bacterial endotoxins, following appropriate spectral pre-processing, which involved novel filtering techniques and advanced feature extraction methods.
Most traditional machine learning algorithms achieved distinction accuracies of over 99 percent, whereas demonstrated an exceptional accuracy of 100 percent. This method offers precise endotoxin classification and holds significant potential for expedited medical diagnoses and therapeutic decision-making in cases of pathogenic infections.
We present the effectiveness of , an innovative architecture inspired by the Progressive Fourier Transform and integrated with the scalogram transformation method, in classifying raw SERS Raman spectral data from biological specimens with unparalleled accuracy relative to conventional machine learning algorithms. Notably, this Convolutional Neural Network (CNN) operates autonomously, requiring no human intervention, and can be applied with substantially smaller datasets than traditional CNNs. Furthermore, it exhibits remarkable proficiency in managing challenging baseline scenarios that often lead to failures in other techniques, thereby promoting the broader clinical adoption of Raman spectroscopy.
为了对生物材料的原始表面增强拉曼光谱(SERS Raman)进行分类,我们提出了一种受渐进傅里叶变换启发并与小波尺度图变换方法相结合的新架构。与主成分分析(PCA)、线性判别分析(LDA)、支持向量机(SVM)、随机森林(RF)、梯度提升机(GBM)等标准机器学习方法不同,[该架构]独立运行,无需人工干预,并且可用于比传统卷积神经网络(CNN)小得多的数据集。DeepRaman在14种内毒素细菌和一个公共数据集上的性能达到了99%的超高准确率。这为内毒素提供了精确分类,并在致病性感染病例的加速医学诊断和治疗决策方面具有巨大潜力。
细菌内毒素是细菌在生长和感染过程中分泌的一种脂多糖,是细菌鉴定的重要生物标志物。它是革兰氏阴性菌外膜层的重要组成部分。通过使用基于银纳米棒的阵列基板,获得了两个独立数据集的表面增强拉曼散射(SERS)光谱:细菌产生的11种内毒素,每次测量的平均检测量为8.75皮克,以及三种对照物几丁质、脂磷壁酸(LTA)、细菌肽聚糖(PGN),因为它们的结构与脂多糖(LPS)的结构有很大差异。
本研究将支持向量机、k近邻和随机森林等各种经典机器学习技术与一种名为DeepRaman的改进深度学习方法结合使用。在进行适当的光谱预处理(包括新颖的滤波技术和先进的特征提取方法)之后,这些算法被用于区分和分类细菌内毒素。
大多数传统机器学习算法的区分准确率超过99%,而[DeepRaman]的准确率达到了100%。该方法为内毒素提供了精确分类,并在致病性感染病例的快速医学诊断和治疗决策方面具有巨大潜力。
我们展示了一种受渐进傅里叶变换启发并与小波尺度图变换方法相结合的创新架构[DeepRaman]在对生物样本的原始SERS Raman光谱数据进行分类方面的有效性,相对于传统机器学习算法,其准确率无与伦比。值得注意的是,这种卷积神经网络(CNN)自主运行,无需人工干预,并且可以应用于比传统CNN小得多的数据集。此外,它在处理具有挑战性的基线情况方面表现出卓越的能力,而这些情况往往会导致其他技术失败,从而推动拉曼光谱在临床上的更广泛应用。