Yan Jiangting, Pu Pengju, Jiang Liheng
School of Art & Design, Shaanxi Fashion Engineering University, Xi'an, China.
CVS Health Corporation, Woonsocket, Rhode Island, USA.
PLoS One. 2025 Mar 3;20(3):e0318524. doi: 10.1371/journal.pone.0318524. eCollection 2025.
Emotion recognition in social media is a challenging task due to the complex and unstructured nature of user-generated content. In this paper, we propose Emotion-RGC Net, a novel deep learning model that integrates RoBERTa, Graph Neural Networks (GNN), and Conditional Random Fields (CRF) to enhance the accuracy and robustness of emotion classification. RoBERTa is employed for effective feature extraction from unstructured text, GNN captures the propagation and influence of emotions through user interactions, and CRF ensures global consistency in emotion label prediction. We evaluate the proposed model on two widely-used datasets, Sentiment140 and Emotion, demonstrating significant improvements over traditional machine learning models and other deep learning baselines in terms of accuracy, recall, F1-score, and AUC. Emotion-RGC Net achieves an accuracy of 89.70% on Sentiment140 and 88.50% on Emotion, highlighting its effectiveness in handling both coarse- and fine-grained emotion classification tasks. Despite its strong performance, we identify areas for future research, including reducing the model's reliance on large labeled datasets, improving computational efficiency, and incorporating temporal dynamics to capture emotion evolution in social networks. Our results indicate that Emotion-RGC Net provides a robust solution for emotion recognition in diverse social media contexts.
由于用户生成内容的复杂性和非结构化性质,社交媒体中的情感识别是一项具有挑战性的任务。在本文中,我们提出了Emotion-RGC Net,这是一种新颖的深度学习模型,它集成了RoBERTa、图神经网络(GNN)和条件随机场(CRF),以提高情感分类的准确性和鲁棒性。RoBERTa用于从非结构化文本中进行有效的特征提取,GNN通过用户交互捕捉情感的传播和影响,CRF确保情感标签预测的全局一致性。我们在两个广泛使用的数据集Sentiment140和Emotion上对提出的模型进行了评估,结果表明,在准确性、召回率、F1分数和AUC方面,该模型相对于传统机器学习模型和其他深度学习基线有显著改进。Emotion-RGC Net在Sentiment140上的准确率达到89.70%,在Emotion上达到88.50%,突出了其在处理粗粒度和细粒度情感分类任务方面的有效性。尽管性能强劲,但我们也确定了未来的研究方向,包括减少模型对大型标记数据集的依赖、提高计算效率以及纳入时间动态以捕捉社交网络中的情感演变。我们的结果表明,Emotion-RGC Net为不同社交媒体环境中的情感识别提供了一个强大的解决方案。