Suppr超能文献

水系锌电池共溶剂电解质策略中的动力学补偿机制

Kinetics Compensation Mechanism in Cosolvent Electrolyte Strategy for Aqueous Zinc Batteries.

作者信息

Cong Jianlong, Wang Yueda, Lin Xing, Huang Zhimei, Wang Hua, Li Jianbo, Hu Le, Hua Haiming, Huang Jianxing, Lin Yu-Chang, Xu Henghui, Li Zhen, Huang Yunhui

机构信息

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.

出版信息

J Am Chem Soc. 2025 Mar 12;147(10):8607-8617. doi: 10.1021/jacs.4c16880. Epub 2025 Mar 3.

Abstract

Aqueous zinc batteries are the ideal choices to realize intrinsically safe energy storage, but parasitic side reactions make it difficult to achieve in practice. Although the cosolvent electrolyte effectively inhibits zinc dendrites and mitigates unexpected side reactions, it brings inevitable kinetics losses. Here, we systematically investigate and compare the interactions between Zn and various oxygen-coordinated cosolvents under pure aqueous environments and the interactions between Zn and OTf under mixed solvent environments containing different oxygen-coordinated cosolvents. And the differences in the effect of different oxygen-coordinated cosolvents on the solvation structure of Zn and the kinetics of ion migration are quantitatively analyzed and summarized. On this basis, we propose a new kinetics compensation mechanism in cosolvent electrolyte strategy that can compensate the kinetics losses due to the introduction of cosolvents by weakening the anion-cation pair interaction and increasing the Zn transfer number. Theory and experiments both demonstrate that this strategy can achieve kinetics compensation of aqueous zinc batteries while improving the electrochemical performance. This work provides a comprehensive and deep understanding of designing cosolvent electrolytes with superior electrochemical performance. More importantly, the proposed strategy can be applied to other cosolvents with similar properties and other aqueous battery systems.

摘要

水系锌电池是实现本质安全能量存储的理想选择,但寄生副反应使其在实际应用中难以实现。尽管共溶剂电解质能有效抑制锌枝晶并减轻意外的副反应,但它也带来了不可避免的动力学损失。在此,我们系统地研究并比较了在纯水环境下锌与各种氧配位共溶剂之间的相互作用,以及在含有不同氧配位共溶剂的混合溶剂环境下锌与三氟甲磺酸根(OTf)之间的相互作用。并定量分析和总结了不同氧配位共溶剂对锌溶剂化结构和离子迁移动力学影响的差异。在此基础上,我们提出了一种共溶剂电解质策略中的新动力学补偿机制,该机制可通过减弱阴离子 - 阳离子对相互作用并增加锌迁移数来补偿因引入共溶剂而导致的动力学损失。理论和实验均表明,该策略在提高水系锌电池电化学性能的同时,能够实现动力学补偿。这项工作为设计具有优异电化学性能的共溶剂电解质提供了全面而深入的理解。更重要的是,所提出的策略可应用于其他具有相似性质的共溶剂以及其他水系电池系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验