Suppr超能文献

用于高效医学诊断的随机可解释机器学习模型

Randomized Explainable Machine Learning Models for Efficient Medical Diagnosis.

作者信息

Muhammad Dost, Ahmed Iftikhar, Ahmad Muhammad Ovais, Bendechache Malika

出版信息

IEEE J Biomed Health Inform. 2024 Nov 13;PP. doi: 10.1109/JBHI.2024.3491593.

Abstract

Deep learning-based models have revolutionized medical diagnostics by using Big Data to enhance disease diagnosis and clinical decision-making. However, their significant computational demands and opaque decision making processes, often characterized as "black-box" systems, pose major challenges in time-critical and resource constrained healthcare settings. To address these issues, this study explores the application of randomized machine learning models, specifically Extreme Learning Machines (ELMs) and Random Vector Functional Link (RVFL) networks, in medical diagnostics. These models introduce stochasticity into their training processes, reducing computational complexity and training times while maintaining accuracy. Furthermore, we integrate Explainable AI techniques namely Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) to explain the decision-making rationale of ELMs and RVFL. Performance evaluations on genitourinary cancers and coronary artery disease datasets demonstrate that RVFL outperforms traditional deep learning models, achieving superioraccuracyof88.29%withacomputationaloverhead of 6.22 seconds for genitourinary cancers, and an accuracy of 81.64% with a computational time of 0.0308 seconds for coronary artery disease. This research highlights the potential of randomized models in enhancing efficiency and transparency in medical diagnosis, thereby accelerating better treatment outcomes and advocating for more accessible and interpretable AI solutions in healthcare.

摘要

基于深度学习的模型通过利用大数据来加强疾病诊断和临床决策,彻底改变了医学诊断。然而,它们巨大的计算需求和不透明的决策过程(通常被视为“黑箱”系统),在时间紧迫和资源受限的医疗环境中构成了重大挑战。为了解决这些问题,本研究探索了随机机器学习模型,特别是极限学习机(ELMs)和随机向量函数链接(RVFL)网络在医学诊断中的应用。这些模型在其训练过程中引入了随机性,在保持准确性的同时降低了计算复杂度和训练时间。此外,我们整合了可解释人工智能技术,即局部可解释模型无关解释(LIME)和沙普利值加法解释(SHAP),以解释ELMs和RVFL的决策原理。对泌尿生殖系统癌症和冠状动脉疾病数据集的性能评估表明,RVFL优于传统深度学习模型,在泌尿生殖系统癌症方面达到了88.29%的卓越准确率,计算开销为6.22秒,在冠状动脉疾病方面准确率为81.64%,计算时间为0.0308秒。这项研究突出了随机模型在提高医学诊断效率和透明度方面的潜力,从而加速实现更好的治疗效果,并倡导在医疗保健领域采用更易获取和可解释的人工智能解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验