Vermunicht Paulien, Makayed Katsiaryna, Buyck Christophe, Knaepen Lieselotte, Piedrahita Giraldo Juan Sebastian, Naessens Sebastiaan, Hens Wendy, Craenenbroeck Emeline Van, Laukens Kris, Desteghe Lien, Heidbuchel Hein
Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium.
Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium.
Digit Health. 2025 Jun 19;11:20552076251337598. doi: 10.1177/20552076251337598. eCollection 2025 Jan-Dec.
Heart rate (HR) monitors could objectively measure physical activity intensity in patients with cardiac disease. However, thorough validation of HR monitors in cardiac populations during daily life, compared to gold-standard Holter monitoring, remains limited. Photoplethysmography (PPG)-based HR data provides near-continuous data, spanning longer periods, but improved algorithms to filter unreliable data are needed.
This observational, prospective pilot study compared the accuracy of two wearables for HR monitoring (electrocardiogram [ECG]-based Polar H10 chest strap and PPG-based Fitbit Inspire 2 wrist tracker) against Holter monitoring in 15 patients with atrial fibrillation (AF), heart failure (HF) and coronary artery disease referred for cardiac rehabilitation (CR). All devices were worn simultaneously for 24 h. We developed and assessed an artefact removal procedure (ARP) using logistic regression machine learning models to detect unreliable PPG data.
The ECG-based chest strap showed a strong correlation ( = 0.94) and clinically acceptable errors (mean absolute error, MAE = 3.4 bpm; mean absolute percentage error, MAPE = 4.9%). Photoplethysmography data exhibited weaker correlation ( = 0.69) and higher errors (MAE = 8.3 bpm, MAPE = 14.3%), with highest accuracies in CR and lowest in HF and especially AF. After implementing the ARP, PPG-based HR data improved to a correlation of 0.75, with MAE of 7.2 bpm and MAPE of 12.4%. The procedure removed nearly one-third of unreliable data, achieving an 81% accuracy.
While ECG-based monitors provide HR data with clinical acceptable accuracy, PPG-based monitors present accuracy challenges. Our machine learning procedure showed potential to filter unreliable PPG-based HR data, which could help measure physical activity intensity in cardiac disease continuously.
心率(HR)监测器可客观测量心脏病患者的身体活动强度。然而,与金标准动态心电图监测相比,心率监测器在心脏疾病人群日常生活中的全面验证仍然有限。基于光电容积脉搏波描记法(PPG)的心率数据可提供近乎连续的数据,覆盖更长时间段,但需要改进算法以过滤不可靠数据。
这项观察性前瞻性试点研究比较了两种用于心率监测的可穿戴设备(基于心电图[ECG]的 Polar H10 胸带和基于 PPG 的 Fitbit Inspire 2 腕部追踪器)与动态心电图监测在 15 例因心脏康复(CR)就诊的心房颤动(AF)、心力衰竭(HF)和冠状动脉疾病患者中的准确性。所有设备同时佩戴 24 小时。我们使用逻辑回归机器学习模型开发并评估了一种伪迹去除程序(ARP),以检测不可靠的 PPG 数据。
基于心电图的胸带显示出很强的相关性(= 0.94)和临床上可接受的误差(平均绝对误差,MAE = 3.4 次/分钟;平均绝对百分比误差,MAPE = 4.9%)。光电容积脉搏波描记法数据显示出较弱的相关性(= 0.69)和更高的误差(MAE = 8.3 次/分钟,MAPE = 14.3%),在心脏康复中的准确性最高,在心力衰竭尤其是心房颤动中最低。实施 ARP 后,基于 PPG 的心率数据相关性提高到 0.75,MAE 为 7.2 次/分钟,MAPE 为 12.4%。该程序去除了近三分之一的不可靠数据,准确率达到 81%。
虽然基于心电图的监测器可提供临床上可接受准确性的心率数据,但基于 PPG 的监测器存在准确性挑战。我们的机器学习程序显示出过滤基于 PPG 的不可靠心率数据的潜力,这有助于持续测量心脏病患者的身体活动强度。