Yang Qing, Lotfi Hadi, Dreyer Frederik, Kern Michal, Blumich Bernhard, Anders Jens
IEEE Trans Biomed Circuits Syst. 2025 Apr;19(2):257-269. doi: 10.1109/TBCAS.2024.3521033. Epub 2025 Apr 2.
Low-field nuclear magnetic resonance (NMR) instruments are an indispensable tool in industrial research and quality control. However, the intrinsically low spin polarization at low magnetic fields severely limits their detection sensitivity and measurement throughput, preventing their widespread use in biomedical analysis. Overhauser dynamic nuclear polarization (ODNP) effectively addresses this problem by transferring the spin polarization from free electrons to protons, significantly enhancing sensitivity. In this paper, we explore the potential of using ODNP for signal enhancement in a custom-designed portable chip-based DNP-enhanced NMR platform, which is centered around a miniaturized microwave (MW) transmitter, a custom-designed NMR-on-a-chip transceiver, and two application-specific ODNP probes. The MW transmitter provides frequency synthesis, signal modulation, and power amplification, providing sufficient output power for efficient polarization transfer. The NMR-on-a-chip transceiver combines a radio frequency (RF) transmitter with a fully differential quadrature receiver, providing pulsed excitation and NMR signal down-conversion and amplification. Two custom-designed ODNP probes are used for proof-of-concept DNP-enhanced NMR relaxometry and spectroscopy measurements. The presented chip-based ODNP platform achieves a maximum MW output power of , resulting in a signal enhancement of using the relaxometry ODNP probe with of non-degassed TEMPOL solution, and an enhancement of with the spectroscopy ODNP probe using of the same solution. The proton polarization was increased from to at a low field of . Proof-of-concept measurements on radical-doped tattoo inks and acetic acid verify the potential of our chip-based ODNP platform for the analysis of biologically and medically relevant parameters such as relaxation times, chemical shifts, and hyperfine interactions.
低场核磁共振(NMR)仪器是工业研究和质量控制中不可或缺的工具。然而,低磁场下固有的低自旋极化严重限制了它们的检测灵敏度和测量通量,阻碍了它们在生物医学分析中的广泛应用。奥弗豪泽动态核极化(ODNP)通过将自旋极化从自由电子转移到质子,有效地解决了这个问题,显著提高了灵敏度。在本文中,我们探索了在定制设计的基于芯片的便携式DNP增强NMR平台中使用ODNP进行信号增强的潜力,该平台围绕着一个小型化微波(MW)发射器、一个定制设计的片上NMR收发器以及两个特定应用的ODNP探头构建。MW发射器提供频率合成、信号调制和功率放大,为高效的极化转移提供足够的输出功率。片上NMR收发器将射频(RF)发射器与全差分正交接收器相结合,提供脉冲激发以及NMR信号下变频和放大。两个定制设计的ODNP探头用于概念验证的DNP增强NMR弛豫测量和光谱测量。所展示的基于芯片的ODNP平台实现了最大MW输出功率为 ,使用含有 的非脱气TEMPOL溶液的弛豫测量ODNP探头时信号增强了 ,使用相同溶液的光谱ODNP探头时增强了 。在 的低场下,质子极化从 增加到 。对自由基掺杂纹身墨水和乙酸的概念验证测量验证了我们基于芯片的ODNP平台在分析生物和医学相关参数(如弛豫时间、化学位移和超精细相互作用)方面的潜力。