Tang Yunbo, Huang Weirong, Chen Chuanxi, Chen Dan
IEEE J Biomed Health Inform. 2025 Jun;29(6):4095-4108. doi: 10.1109/JBHI.2025.3535592.
Electroencephalogram (EEG) artifact removal has been investigated for decades with the goal of reconstructing the clean signals for the subsequent EEG analysis. However, existing denoising methods still have limited capabilities to handle the highly mixed artifacts and the fine-grained temporal dependency of artifact-free EEG without a priori knowledge of the artifacts. To address the challenges, this study proposes a CNN-Transformer-based dual-stage collaborative ensemble learning framework (namely CT-DCENet) in the form of three modules: 1) randomized collaboration module initially utilizes four individual learners to reveal multi-group morphological characteristics of the denoised EEG, 2) linear ensemble module integrates the outputs of four individual learners via weighted linear combination to preliminarily estimate the denoised EEG, 3) information complementation module takes in the residual between the contaminated EEG and the above estimated EEG, and critically applies CNN-Transformer-based feature extractor and denoising head to learn the detailed characteristics of the denoised EEG. CT-DCENet is conducted in a dual-stage training manner to derive the morphological characteristics & the detailed characteristics of the artifact-free EEG successively. The experimental results on the public EEG datasets indicate that 1) CT-DCENet significantly outperforms the state-of-the-art counterparts (e.g., DuoCL, GCTNet) under the conditions of various artifacts and noise intensities, where the increases of SNR & PCC are 0.79 dB, 0.6% and the decrease of RRMSE is 1.9% for the removal of EMG, ECG, EOG mixed artifacts, 2) the reconstructed EEG by CT-DCENet can well fit the clean EEG with a low error achieved, especially for the peak amplitude, the high-frequency area and the boundary area of the EEG waveform, providing promising EEG data for the downstream task-oriented EEG analysis.
几十年来,人们一直在研究脑电图(EEG)伪迹去除技术,目的是重建干净的信号,以便进行后续的脑电图分析。然而,现有的去噪方法在处理高度混合的伪迹以及无伪迹脑电图的细粒度时间依赖性方面能力仍然有限,且无需对伪迹有先验知识。为应对这些挑战,本研究提出了一种基于卷积神经网络(CNN)和变换器(Transformer)的双阶段协作集成学习框架(即CT-DCENet),该框架由三个模块组成:1)随机协作模块最初利用四个独立的学习器来揭示去噪脑电图的多组形态特征;2)线性集成模块通过加权线性组合整合四个独立学习器的输出,以初步估计去噪脑电图;3)信息互补模块接收受污染脑电图与上述估计脑电图之间的残差,并严格应用基于CNN-Transformer的特征提取器和去噪头来学习去噪脑电图的详细特征。CT-DCENet以双阶段训练方式进行,以相继得出无伪迹脑电图的形态特征和详细特征。在公开的脑电图数据集上的实验结果表明:1)在各种伪迹和噪声强度条件下,CT-DCENet显著优于现有技术(如DuoCL、GCTNet),对于去除肌电图(EMG)、心电图(ECG)、眼电图(EOG)混合伪迹,信噪比(SNR)提高0.79 dB、皮尔逊相关系数(PCC)提高0.6%,均方根相对误差(RRMSE)降低1.9%;2)CT-DCENet重建的脑电图能够很好地拟合干净的脑电图,误差较小,特别是在脑电图波形的峰值幅度、高频区域和边界区域,为下游面向任务的脑电图分析提供了有前景的脑电图数据。