Jiang Rui, Tong Shen, Wu Jiawei, Hu Haowei, Zhang Ran, Wang Heng, Zhao Yan, Zhu Weixin, Li Shuyan, Zhang Xiao
School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, 221000, China.
Xuzhou Jiazhi information Technology Co., Ltd., Xuzhou, 221000, China.
Sci Rep. 2025 Jun 3;15(1):19419. doi: 10.1038/s41598-025-98653-1.
EEG is widely applied in emotion recognition, brain disease detection, and other fields due to its high temporal resolution and non-invasiveness. However, artifact removal remains a crucial issue in EEG signal processing. Recently, with the rapid development of deep learning, there has been a significant transformation in the methods of EEG artifact removal. Nonetheless, existing research still exhibits some limitations: (1) insufficient capability to remove unknown artifacts; (2) inability to adapt to tasks where artifact removal needs to be applied to the overall input of multi-channel EEG data. Therefore, this study proposes CLEnet by integrating dual-scale CNN (Convolutional Neural Networks) and LSTM (Long Short-Term Memory), and incorporating an improved EMA-1D (One-Dimensional Efficient Multi-Scale Attention Mechanism). CLEnet can extract the morphological features and temporal features of EEG, thereby separating EEG from artifacts. We conducted experiments on three datasets, and the results showed that CLEnet performed best. Specifically, in the task of removing artifacts from multi-channel EEG data containing unknown artifacts, CLEnet shows improvements of 2.45% and 2.65% in SNR(signal-to-noise ratio) and CC(average correlation coefficient). Moreover, RRMSE(relative root mean square error in the temporal domain) and RRMSE (relative root mean square error in the frequency domain) decrease by 6.94% and 3.30%.
脑电图(EEG)因其高时间分辨率和非侵入性,在情绪识别、脑部疾病检测等领域得到广泛应用。然而,伪迹去除仍是EEG信号处理中的关键问题。近年来,随着深度学习的快速发展,EEG伪迹去除方法发生了显著变革。尽管如此,现有研究仍存在一些局限性:(1)去除未知伪迹的能力不足;(2)无法适应需要将伪迹去除应用于多通道EEG数据整体输入的任务。因此,本研究通过集成双尺度卷积神经网络(CNN)和长短期记忆网络(LSTM),并引入改进的一维高效多尺度注意力机制(EMA-1D),提出了CLEnet。CLEnet能够提取EEG的形态特征和时间特征,从而将EEG与伪迹分离。我们在三个数据集上进行了实验,结果表明CLEnet表现最佳。具体而言,在从包含未知伪迹的多通道EEG数据中去除伪迹的任务中,CLEnet在信噪比(SNR)和平均相关系数(CC)方面分别提高了2.45%和2.65%。此外,时域相对均方根误差(RRMSE)和频域相对均方根误差(RRMSE)分别降低了6.94%和3.30%。