Irmici Giovanni, Cozzi Andrea, Depretto Catherine, Della Pepa Gianmarco, Ancona Eleonora, Bonanomi Alice, Ballerini Daniela, D'Ascoli Elisa, De Berardinis Claudia, Marziali Sara, Giambersio Emilia, Scaperrotta Gianfranco
Breast Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20131 Milano, Italy.
Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Via Tesserete 46, 6900 Lugano, Switzerland.
Eur J Radiol. 2025 Apr;185:112012. doi: 10.1016/j.ejrad.2025.112012. Epub 2025 Feb 25.
To assess the impact of an artificial intelligence decision support system (Koios DS) on the diagnostic performance of radiologists with different experience in breast ultrasound and to evaluate its potential to reduce unnecessary biopsies.
This observational, prospective, single-centre study included consecutive patients scheduled for ultrasound-guided core-needle biopsy of suspicious breast lesions. Three radiologists with different experience in breast ultrasound (senior breast radiologist: 20 years; junior breast radiologist: 3 years; general radiologist: less than 1 year) independently evaluated the lesions, assigning BI-RADS categories before and after Koios DS application. Biopsy reports served as the reference standard. AUCs and the number of unnecessary biopsies before and after implementing Koios DS were compared using DeLong and McNemar's tests.
A total of 222 patients (median age 58 years, interquartile range 46-72 years) with 226 lesions were included, 89/226 (39.4 %) benign and 137/226 (60.6 %) malignant. The application of Koios DS significantly improved (p < 0.001) the AUC of all radiologists, with a 0.078 AUC Δ for the junior breast radiologist (from 0.786 to 0.864), a 0.062 AUC Δ for the general radiologist (from 0.719 to 0.781), and a 0.045 AUC Δ for the senior breast radiologist (from 0.823 to 0.868). Koios DS would have significantly reduced the number of unnecessary biopsies recommended by the senior breast radiologist (from 41/89 [46.1 %] to 30/89 [33.7 %], p < 0.001) and by the junior breast radiologist (from 46/89 [51.7 %] to 29/89 [32.6 %], p = 0.001).
The application of Koios DS improved the radiologists' diagnostic performance, particularly for less experienced ones, and could potentially reduce unnecessary biopsies.
评估人工智能决策支持系统(Koios DS)对不同经验的乳腺超声放射科医生诊断性能的影响,并评估其减少不必要活检的潜力。
这项观察性、前瞻性、单中心研究纳入了计划对可疑乳腺病变进行超声引导下粗针活检的连续患者。三位在乳腺超声方面经验不同的放射科医生(资深乳腺放射科医生:20年;初级乳腺放射科医生:3年;普通放射科医生:不到1年)独立评估病变,在应用Koios DS前后指定BI-RADS分类。活检报告作为参考标准。使用DeLong检验和McNemar检验比较实施Koios DS前后的AUC和不必要活检的数量。
共纳入222例患者(中位年龄58岁,四分位间距46 - 72岁),有226个病变,其中89/226(39.4%)为良性,137/226(60.6%)为恶性。Koios DS的应用显著提高了(p < 0.001)所有放射科医生的AUC,初级乳腺放射科医生的AUC增加了0.078(从0.786到0.864),普通放射科医生的AUC增加了0.062(从0.719到0.781),资深乳腺放射科医生的AUC增加了0.045(从0.823到0.868)。Koios DS将显著减少资深乳腺放射科医生推荐的不必要活检数量(从41/89 [46.1%]降至30/89 [33.7%],p < 0.001)以及初级乳腺放射科医生推荐的不必要活检数量(从46/89 [51.7%]降至29/89 [32.6%],p = 0.001)。
Koios DS的应用提高了放射科医生的诊断性能,尤其是对经验较少的医生,并且有可能减少不必要的活检。