Suppr超能文献

生成式人工智能、分子对接和分子动力学模拟辅助鉴定新型转录阻遏物EthR抑制剂作为靶点

Generative AI, molecular docking and molecular dynamics simulations assisted identification of novel transcriptional repressor EthR inhibitors to target .

作者信息

Chikhale Rupesh V, Choudhary Rinku, Eldesoky Gaber E, Kolpe Mahima Sudhir, Shinde Omkar, Hossain Dilnawaz

机构信息

Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK.

SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India.

出版信息

Heliyon. 2025 Feb 10;11(4):e42593. doi: 10.1016/j.heliyon.2025.e42593. eCollection 2025 Feb 28.

Abstract

Tuberculosis (TB) remains a persistent global health threat, with (Mtb) continuing to be a leading cause of mortality worldwide. Despite efforts to control the disease, the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) TB strains presents a significant challenge to conventional treatment approaches. Addressing this challenge requires the development of novel anti-TB drug molecules. This study employed de novo drug design approaches to explore new EthR ligands and ethionamide boosters targeting the crucial enzyme InhA involved in mycolic acid synthesis in Mtb. Leveraging REINVENT4, a modern open-source generative AI framework, the study utilized various optimization algorithms such as transfer learning, reinforcement learning, and curriculum learning to design small molecules with desired properties. Specifically, focus was placed on molecule optimization using the Mol2Mol option, which offers multinomial sampling with beam search. The study's findings highlight the identification of six promising compounds exhibiting enhanced activity and improved physicochemical properties through structure-based drug design and optimization efforts. These compounds offer potential candidates for further preclinical and clinical development as novel therapeutics for TB treatment, providing new avenues for combating drug-resistant TB strains and improving patient outcomes.

摘要

结核病(TB)仍然是全球持续存在的健康威胁,结核分枝杆菌(Mtb)仍是全球主要的死亡原因。尽管人们努力控制这种疾病,但耐多药(MDR)和广泛耐药(XDR)结核菌株的出现给传统治疗方法带来了重大挑战。应对这一挑战需要开发新型抗结核药物分子。本研究采用从头药物设计方法,探索针对参与Mtb中分枝菌酸合成的关键酶InhA的新型EthR配体和乙硫异烟胺增强剂。该研究利用现代开源生成式人工智能框架REINVENT4,采用迁移学习、强化学习和课程学习等各种优化算法来设计具有所需特性的小分子。具体而言,重点是使用Mol2Mol选项进行分子优化,该选项通过束搜索提供多项式采样。该研究的结果突出表明,通过基于结构的药物设计和优化努力,鉴定出了六种具有增强活性和改善理化性质的有前景的化合物。这些化合物为作为结核病治疗的新型疗法进行进一步的临床前和临床开发提供了潜在候选物,为对抗耐药结核菌株和改善患者预后提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b12/11874554/3d6f917d9bf5/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验