Suppr超能文献

利用深度学习方法预测 COVID-19 大流行塑料污染的模型。

The predictive model for COVID-19 pandemic plastic pollution by using deep learning method.

机构信息

School of Information Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, People's Republic of China.

Department of Civil Engineering, University of Tabriz, Tabriz, Iran.

出版信息

Sci Rep. 2023 Mar 13;13(1):4126. doi: 10.1038/s41598-023-31416-y.

Abstract

Pandemic plastics (e.g., masks, gloves, aprons, and sanitizer bottles) are global consequences of COVID-19 pandemic-infected waste, which has increased significantly throughout the world. These hazardous wastes play an important role in environmental pollution and indirectly spread COVID-19. Predicting the environmental impacts of these wastes can be used to provide situational management, conduct control procedures, and reduce the COVID-19 effects. In this regard, the presented study attempted to provide a deep learning-based predictive model for forecasting the expansion of the pandemic plastic in the megacities of Iran. As a methodology, a database was gathered from February 27, 2020, to October 10, 2021, for COVID-19 spread and personal protective equipment usage in this period. The dataset was trained and validated using training (80%) and testing (20%) datasets by a deep neural network (DNN) procedure to forecast pandemic plastic pollution. Performance of the DNN-based model is controlled by the confusion matrix, receiver operating characteristic (ROC) curve, and justified by the k-nearest neighbours, decision tree, random forests, support vector machines, Gaussian naïve Bayes, logistic regression, and multilayer perceptron methods. According to the comparative modelling results, the DNN-based model was found to predict more accurately than other methods and have a significant predominance over others with a lower errors rate (MSE = 0.024, RMSE = 0.027, MAPE = 0.025). The ROC curve analysis results (overall accuracy) indicate the DNN model (AUC = 0.929) had the highest score among others.

摘要

大流行塑料(例如口罩、手套、围裙和消毒剂瓶)是 COVID-19 大流行感染废物的全球后果,这些废物在全球范围内显著增加。这些危险废物在环境污染中起着重要作用,并间接传播 COVID-19。预测这些废物的环境影响可用于提供情境管理、进行控制程序并减少 COVID-19 的影响。在这方面,本研究试图提供一种基于深度学习的预测模型,用于预测伊朗特大城市中大流行塑料的扩张。在方法方面,从 2020 年 2 月 27 日到 2021 年 10 月 10 日,为 COVID-19 的传播和在此期间个人防护设备的使用收集了一个数据库。该数据集通过深度神经网络 (DNN) 程序进行训练和验证,用于预测大流行塑料污染。通过混淆矩阵、接收者操作特征 (ROC) 曲线和 k-最近邻、决策树、随机森林、支持向量机、高斯朴素贝叶斯、逻辑回归和多层感知机方法对 DNN 基于模型的性能进行控制。根据比较建模结果,发现 DNN 基于模型比其他方法更准确地预测,并且具有较低的错误率,具有显著优势(MSE=0.024、RMSE=0.027、MAPE=0.025)。ROC 曲线分析结果(整体准确性)表明 DNN 模型(AUC=0.929)得分最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1e0/10011400/e78baec36126/41598_2023_31416_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验