Al-Abbas Nouf S, Shaer Nehad A
Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia.
Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia.
J Alzheimers Dis Rep. 2024 Dec 23;8(1):1705-1721. doi: 10.1177/25424823241309024. eCollection 2024.
This study explores how gut metabolites, produced through bacterial metabolism in the gut, influence neurological conditions like Alzheimer's disease (AD). Key metabolites such as succinate and short-chain fatty acids signal through the autonomic nervous system and can cross the blood-brain barrier, impacting central nervous system functions.
The aim is to examine the role of the gut microbiota in compensating for metabolic deficiencies in AD. By analyzing wild-type (WT) and APP/PS1 mice, the study investigates how the microbiome affects key metabolic processes and whether it can slow AD progression.
High-throughput sequencing data from the gut microbiomes of APP/PS1 transgenic AD model mice and age-matched WT C57BL/6 male mice were analyzed for microbial and metabolite profiles.
Alpha and beta diversity analyses showed differences in microbial composition between groups. Partial least squares discriminant analysis and Anosim confirmed distinct microbiome profiles in WT and APP/PS1 mice. At the genus level, was more abundant in WT mice, while , , , , and were more prevalent in APP/PS1 mice.
While taxonomic differences did not directly link specific microorganisms to AD, functional analysis identified key metabolites-acetyl-CoA, glucose, succinate, lipids, choline, and acetylcholine-that may alleviate energy deficits and synaptic dysfunction. This study suggests that the microbiome may help compensate for AD-related impairments, opening avenues for microbiome-based therapies.
本研究探讨肠道中细菌代谢产生的肠道代谢产物如何影响阿尔茨海默病(AD)等神经疾病。琥珀酸和短链脂肪酸等关键代谢产物通过自主神经系统发出信号,并可穿过血脑屏障,影响中枢神经系统功能。
目的是研究肠道微生物群在补偿AD代谢缺陷中的作用。通过分析野生型(WT)和APP/PS1小鼠,该研究调查了微生物群如何影响关键代谢过程以及它是否能减缓AD进展。
分析APP/PS1转基因AD模型小鼠和年龄匹配的WT C57BL/6雄性小鼠肠道微生物群的高通量测序数据,以获取微生物和代谢产物谱。
α和β多样性分析显示各组之间微生物组成存在差异。偏最小二乘判别分析和相似性分析证实WT和APP/PS1小鼠的微生物群谱不同。在属水平上, 在WT小鼠中更为丰富,而 、 、 、 和 在APP/PS1小鼠中更为普遍。
虽然分类学差异并未直接将特定微生物与AD联系起来,但功能分析确定了关键代谢产物——乙酰辅酶A、葡萄糖、琥珀酸、脂质、胆碱和乙酰胆碱——它们可能缓解能量不足和突触功能障碍。本研究表明,微生物群可能有助于补偿与AD相关的损伤,为基于微生物群的治疗开辟了道路。